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Abstract

Bayesian inference in Vector Autoregressions (VARs) involves manipulating large
matrices which appear in the posterior (or conditional posterior) of the VAR coeffi-
cients. For large VARs, the computational burden of these manipulations can render
empirical work impractical. In response to this, many researchers transform their
VARs so as to allow for Bayesian estimation to proceed one equation at a time. This
leads to a massive reduction in the computational burden. This transformation in-
volves taking the Cholesky decomposition for the error covariance matrix. However,
this strategy implies that posterior inference depends on the order the variables en-
ter the VAR. In this paper we develop an alternative transformation, based on the
eigendecomposition, which does not lead to order dependence. Beginning with an
inverse-Wishart prior on the error covariance matrix, we derive and discuss the prop-
erties of the prior it implies on the eigenmatrix and eigenvalues. We then show how
an extension of the prior on the eigenmatrix can allow for greater flexibility while
maintaining many of the benefits of conjugacy. We leverage this flexibility to ex-
tend the prior on the eigenvalues to allow for stochastic volatility. The properties
of the eigendecomposition approach are investigated in a macroeconomic forecasting
exercise involving VARs with 20 variables.
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1 Introduction

Vector Autoregressions (VARs) have shown their usefulness in a range of applications in

macroeconomics (e.g., Sims, 1980; Cogley and Sargent, 2005; Primiceri, 2005; Koop, 2013;

Korobilis, 2013). Starting with Banbura et al. (2010), macroeconomists have increasingly

worked with large VARs, containing tens or even hundreds of dependent variables. Bayesian

inference and prediction with such large VARs present an enormous computational chal-

lenge. The main computational bottleneck relates to the posterior for the matrix of VAR

coefficients, A. For VARs involving n variables and p lags this will contain n2 × p coeffi-

cients which is huge for empirically reasonable choices for n and p. Manipulation involving

features such as the posterior covariance matrix of A will involve working with matrices of

dimension pn2× pn2. However, working with the VAR one equation at a time leads to ma-

nipulations involving pn×pn matrices. Even though such manipulations must be repeated

n times, this equation-by-equation strategy has been shown, e.g. by Carriero et al. (2019),

to lead to an O(n2) reduction in the computational burden. Even for n = 10 the benefits

of equation by equation estimation can be seen to be substantial and for n = 100 they are

enormous.

In the conventional (reduced form) VAR, with yt = (y1,t, . . . , yn,t)
′ being the vector of

dependent variables and Σ being the error covariance matrix, equation-by-equation estima-

tion is not possible since the off-diagonal elements of Σ would be ignored. However, if the

VAR is transformed so that the error covariance matrix becomes diagonal, equation-by-

equation estimation is valid. These considerations motivate most of the recent large VAR

literature which uses the Cholesky decomposition to do this transformation. In particular,

let Σ−1 = L′C−1L, where C is a diagonal matrix and L is a lower triangular matrix with

ones on the diagonal, then the Cholesky-transformed VAR has dependent variables Lyt

and a diagonal error covariance matrix and equation-by-equation estimation is possible.
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Several researchers have pointed out that the use of the Cholesky decomposition leads

to order dependence. Order dependence occurs if the posterior for any VAR parameter

depends on the way the variables are ordered in the VAR. Order dependence also implies

that the predictive distribution for a variable changes if its ordering in the VAR changes.

In the case of Bayesian VAR analysis, ordering issues can arise due to the prior used for the

error covariance matrix. Carriero et al. (2019) theoretically demonstrate that the posterior

of the VAR coefficients, conditional on the error covariance matrix Σ remains invariant to

ordering. The lack of order invariance arises due to the fact that the implied prior on Σ is

not order invariant. Thus, most of the discussion in this literature, including the present

paper, centers on the error covariance matrix.

Another important recent paper is Arias et al. (2023) which demonstrates the impor-

tance of the ordering issue in Cholesky-transformed VARs both theoretically and empiri-

cally. The authors show that, while point forecasts are not sensitive to the way variables

are ordered, predictive standard deviations can be substantially affected. These points are

reinforced in Chan et al. (2023) who also show that the problems with order invariance

become more pronounced as the dimension of the VAR grows. In other words, the problem

is most acute precisely where the Cholesky transformation is most necessary.1

There are some papers which retain the Cholesky decomposition, but seek to choose

the optimal order or average over orders. Papers such as Levy and Lopes (2021) and Wu

and Koop (2023) develop methods for computing the probability of each ordering, then

do order selection or order averaging. However, the limitation of these approaches is that

they are only practical in relatively small VARs. When n is large, the number of possible

orderings becomes enormous, dramatically increasing the computational burden of these

approaches.

1Arias et al. (2023) and Chan et al. (2023) use VARs with stochastic volatility as opposed to ho-
moskedastic VARs which are the focus of the first half of this paper. But their theoretical derivations also
hold with homoskedastic VARs.
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These considerations motivate the present paper. In it, we develop a new approach to

Bayesian VAR analysis which uses the eigendecomposition of the error covariance. We call

this model BVAR-eig. We begin by considering the inverse-Wishart prior for Σ which is

known to be order invariant. We show that this implies priors for the eigenmatrix (i.e. the

matrix of eigenvectors) and eigenvalues which appear in BVAR-eig to have Bingham and

inverse-Gamma distributions, respectively. We refer to this as the BIG prior. We develop

an efficient MCMC algorithm that allows for Bayesian posterior and predictive inference

based on the this prior.

Using our BVAR-eig with BIG prior, we carry out a substantial empirical exercise in-

volving homoskedastic VARs with up to 20 macro variables. We compare the performance

of our eigendecomposition-based approach to the Cholesky-based approach (labeled BVAR-

chol) and to full system estimation of a conventional Bayesian VAR with inverse-Wishart

prior (BVAR-IW). In relation to BVAR-IW we demonstrate large improvements in compu-

tation time. Relative to the BVAR-chol, we demonstrate some improvements in in-sample

and forecast performance. We also demonstrate the BVAR-chol’s high degree of sensitivity

to the choice of variable order.

In the second half of the paper, we consider extensions of BVAR-eig which could be

empirically useful. The main extension we consider is the addition of stochastic volatility

(SV). Since SV is empirically important in many applications (e.g., Cogley and Sargent,

2005; Primiceri, 2005; Koop and Korobilis, 2013) we highlight this extension as being of

substantive interest.

It is not straightforward to introduce SV to the VAR with BIG prior since it implies

that the eigenvalues control both the scale of the error covariance and the orientation of

the eigenmatrix. Hence, we follow a suggestion of Hoff (2009b) and break this dependence

by introducing a separate prior parameter to control the orientation of the eigenmatrix.

We call this the independent Bingham inverse-gamma or IBIG prior. The IBIG prior is
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potentially interesting in and of itself. However, we introduce it mainly since it allows us

to introduce SV into the VAR in a simple way. Since the eigenvalues now only relate to the

scale of the variances, we can assume they are SV processes without imposing restrictions

on the orientation of the eigenmatrix leading to the model we call BVAR-eigSV.

We also consider a scale-adjusted version of BVAR-eigSV which can be used by re-

searchers who want an approach which is not only order invariant, but also does not depend

on the scale the variables are measured in. We end with discussion of methods of allowing

for time-variation in the eigenmatrix.

2 Eigendecomposition and the Bayesian VAR

2.1 Transforming the VAR: BVAR-eig and BVAR-chol

To fix the basic ideas, consider a standard homoskedastic VAR of order p. Let yt =

(y1,t, . . . , yn,t)
′ be an n×1 vector of variables that is observed over the periods t = 1, . . . , T .

Then, the VAR(p) is given by:

yt = a+A1yt−1 + · · ·+Apyt−p + εt, εt ∼ N (0,Σ) , (1)

where a is an n × 1 vector of intercepts, A1, . . . ,Ap are n × n coefficient matrices. Note

that there are n equations and each equation has k = np + 1 regressors which leads to a

total of nk = n2p+ n coefficients. We will refer to this as the reduced form VAR.

The eigendecomposition of a positive definite covariance matrix Σ is given by Σ =

UΛU′. The matrix U is an n × n orthogonal matrix of eigenvectors and is called the

eigenmatrix. Λ = diag(λ1, . . . , λn) is the matrix of non-negative eigenvalues.

The BVAR-eig is produced by multiplying the VAR byU′ leading to a transformed VAR

with U′yt on the left hand side and a diagonal error covariance matrix Λ. The BVAR-chol
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uses the Cholesky-decomposition leading to a transformed VAR with Lyt on the left hand

side and a diagonal error covariance matrix C. Thus, both have a diagonal error covariance

matrix and it is this property which allows for equation-by-equation Bayesian estimation

of both of them.

Note, however, that for the BVAR-chol the lower triangularity of L means that the

equation for each variable will have different contemporaneous values of variables appearing

in them. For instance, the first variable will appear in all equations, the second will appear

in all remaining (n − 1) equations, etc.. In contrast, other than being orthogonal U is

unrestricted which means each equation will have the same variables appearing in it. It is

these properties which, through the choices of prior used in these models, that leads to the

fact that the BVAR-eig is order-invariant while BVAR-chol is not.

2.2 Priors for BVAR-eig and BVAR-chol

For the BVAR-chol, it is standard to use a Normal prior on the elements of L and inverse-

gamma priors on diagonal elements in C. As noted above, it is well-established that this

leads to a posterior which depends on the way the variables are ordered in the VAR. It is

also worth stressing that this prior does not imply an inverse-Wishart prior on Σ use of

which does imply order invariance in the reduced form VAR.2

To develop a prior for BVAR-eig, our strategy will be to begin with the commonly

used inverse-Wishart prior on the reduced form VAR error covariance matrix Σ, then work

out what it implies for U and Λ. In particular, we assume the prior for Σ to have shape

parameter v > 0 and scale matrix S0 and, thus, Σ ∼ IW(v,S0).

Sub-section 2.4 of Hoff (2009b) shows what the inverse-Wishart prior on Σ implies for

2It is important to distinguish between the BVAR-chol representation as used, e.g., in Carriero et al.
(2019) and the asymmetric conjugate prior approach of Chan (2022). The latter author uses a modified
Cholesky decomposition (see footnote 5) and provides a different way of decomposing an inverse-Wishart
covariance matrix which also leads to order-invariant inference (see Proposition 1).
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its eigenmatrix and eigenvalues. It turns out the former has a Bingham distribution and the

diagonal elements of the latter have inverse-Gamma distributions. We will not reproduce

the full proofs of Hoff (2009b) but provide some details as they allow us to discuss some

properties of the Bingham distribution.

A matrix U is said to have a generalised Bingham distribution if its density function is

given by

p(U | D,B,V) = c(D,B) etr(BU′VDV′U), (2)

where c(D,B) is the integrating constant given in equation (8) of Hoff (2009b). D and B

are diagonal matrices. It can be shown that, conditional on Λ, the prior for U has this form

where B = −1
2
Λ−1. V and D are defined through the eigendecomposition of S0. That is

S0 = VDV′.

The Bingham distribution, proposed for a vector by Bingham (1974) and extended to

a matrix variate version by Khatri and Mardia (1977) is the prior we use on the eigen-

matrix. The conditional posterior of the eigenmatrix also turns out to be Bingham and a

computationally efficient method for taking draws from it is developed in Hoff (2009b).

The inverse-Wishart prior for Σ can be shown to imply the prior for the eigenvalues

in Λ to be independent inverse-gamma distributions with arguments α = v+n−1
2

, β =

1
2
u′i (VDV′)ui where ui is the ith column of U.

Thus, the inverse-Wishart prior for Σ implies a Bingham and inverse-Gamma, or BIG,

prior for the eigenmatrix and eigenvalues. We emphasize that this equivalence between the

BIG and the inverse Wishart prior automatically implies order-invariance (and, thus, the

proof of order invariance given in Appendix A is not needed for this case).

For both the eigendecomposition and Cholesky decomposition versions of the model, we

make prior hyperparameter choices which, where possible, are the same. Remember that
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S0 = VDV′. To elicit prior hyperparameters for the BIG prior, we adopt the following

strategy. We use a relatively non-informative Minnesota prior for the error covariance

matrix involving a degrees of freedom of v = n+3, and S0 = diag (s21, . . . , s
2
n). We then set

V = In resulting in D = S0. Further details of prior hyperparameter choice are provided

in Appendix B.

2.3 MCMC Algorithms for BVAR-eig and BVAR-chol

The MCMC algorithm for BVAR-chol we use is the one in Chan et al. (2022) to which

the reader is referred for further details. The model of Chan et al. (2022) has SV. In this

section, we consider only homoskedastic models and use the same inverse-Gamma priors

on the error variances as we do for BVAR-eig.

For the BVAR-eig, we will show, drawing on results from Hoff (2009b), that the condi-

tional posteriors of the eigenmatrix and eigenvalues are Bingham and inverse-Gamma and

draws from them can easily be taken. But before providing details, it is worth mentioning

two issues which arise in this algorithm which are specific to our use of the eigendecompo-

sition. The first is that the BIG prior suffers from the label switching problem. One will

get the same likelihood by permuting the columns of eigenmatrix and then the eigenvalues

accordingly. This can be overcome using the random permutation sampler of Frühwirth-

Schnatter (2001). The second is that, for reasons explained below, the MCMC algorithm

proposed by Hoff (2009b) breaks down the full eigenmatrix U into draws of two columns

at a time instead of simply drawing one column at a time. This feature is particularly

important for high-dimensional VARs and we will show that the computation is as fast as

when using the Cholesky decomposition.

Posterior draws can be obtained by sampling sequentially from:

Step1 : p (U | Y,A,Λ)

Step2 : p (A | Y,U,Λ)
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Step3 : p (Λ | Y,U,A)

where Y denotes the data and A is the matrix containing all the VAR coefficients. The

last two steps are standard and will only briefly be described here. Most of this sub-section

will deal with Step 1 which is non-standard due to the orthogonality of U.

To see why the last two steps are standard consider the reduced form VAR defined in

(1). Since U is orthogonal, U−1 = U′ and we can left multiply the VAR by U′ to get

U′yt = U′a+U′A1yt−1 + · · ·+U′Apyt−p + εt, εt ∼ N (0,Λ) . (3)

This is a VAR with diagonal error covariance matrix which allows for equation-by-equation

estimation. The reduced form VAR coefficients, A, are drawn using the algorithm of

Chan et al. (2023). Note that the latter algorithm extends the algorithm of Chan et al.

(2022), which is for the case where the Cholesky decomposition is used, to the case where

the impact matrix is not restricted to be lower triangular and, thus, is relevant for our

BVAR-eig. Chan et al. (2023) show that the computational complexity of the step where

the reduced form VAR coefficients are drawn is of the same order as the Cholesky-based

algorithm of Chan et al. (2022). Any of the standard VAR priors can be used for A. In

this paper, we use the Horseshoe prior (e.g., Carvalho et al., 2010; Cross et al., 2020). The

eigenvalues play the role of error variances and standard formulae for their inverse-Gamma

conditional posteriors apply when inverse-Gamma priors are used.

The conditional posterior distribution of U is:

p(U | Y,A,Λ,D,V) =
n∏

i=1

e−
1
2
λ−1
i u′

i(VDV′+(Y−XA)′(Y−XA))ui . (4)

which has the form of a Bingham distribution and seems to suggest that one can simply

draw the eigenvectors in the eigenmatrix one at a time from the Bingham distribution.
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However, Hoff (2009b) shows that such a strategy will not work since the chain of draws

will be reducible. This arises from the fact that U is orthogonal and, thus, the conditional

distribution of ui given the other columns of U has restricted support. Fortunately, Hoff

(2009a) proposes a solution to this: draw the eigenvectors two columns at a time.

To see how this algorithm works, let us take the first and second columns of the eigen-

vectors, {u1,u2}, as an example. Conditional on the remaining columns, their distribution

is equivalent to RQ where R is an orthonormal basis for the nullspace of the remaining

columns and Q is orthogonal with density

p(Q) ∝ etr(−
1
2
Λ−1

1,2Q
′KQ) = e−

1
2(λ

−1
1 q′1Kq1+λ−1

2 q′2Kq2), (5)

where K = R′(VDV′ + (Y −XA)′(Y −XA)
)
R, qi is the ith column of Q.

Since Q is orthogonal, it can be parameterized as Q =

 cosϕ q sinϕ

sinϕ −q cosϕ

 , for

some ϕ ∈ (0, 2π) and q = ±1. The second column q2 of Q is a linear function of

the first column q1, and the uniform density on the circle is constant in ϕ, so the joint

density of (ϕ, s) is simply p(Q(ϕ, q)). Sampling from this distribution can be accom-

plished by first sampling ϕ ∈ (0, 2π) from a density proportional to p(Q(ϕ, q)), and

then sampling q uniformly from {-1,1}. The density p(Q(ϕ, q)) can be obtained from

Equation (5), by replacing q1 and q2 with

 cosϕ

sinϕ

 and

 q sinϕ

−q cosϕ

, respectively.

p(ϕ) ∝ exp
{
−1

2

(
(k1,1

λ1
+ k2,2

λ2
) cos2(ϕ) + (k2,2

λ1
+ k1,1

λ2
) sin2(ϕ) + (k1,2

λ1
+ k2,1

λ1
− k1,2

λ2
− k2,1

λ2
) cos(ϕ) sin(ϕ)

)}
where ki,j is the (i, j)th element in matrix K, which is 2× 2.

To summarize, the Gibbs sampling scheme for the eigenvectors is as follows: Given

U(j) = U, perform steps a− e for each pair (n1, n2) ⊂ {1, . . . , n} in random order:

Step a: let R be the null space of U[,−(n1,n2)];

Step b: compute K = R′(VDV′ + (Y −XA)′(Y −XA)
)
R;
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Step c: sample ϕ ∈ (0, 2π) from the density proportional to p(ϕ);

Step d: sample s uniformly from {-1,1};

Step e: set R = E(ϕ, q) and U[,(n1,n2)] = RQ.

Set U(j+1) = U.

3 Empirical Illustration: Homoskedastic Models

3.1 Overview and Data Description

We now investigate the properties of our BVAR-eig approach as compared with other

homoskedastic VARs. We use a dataset that consists of 20 quarterly US variables with a

sample period from 1960Q1 to 2021Q3. It is constructed from the FRED-QD database of

the Federal Reserve Bank of St. Louis as described in McCracken and Ng (2016). The

dataset contains a range of standard macroeconomic and financial variables, such as real

GDP, industrial production, inflation rates, labor market variables and interest rates. In it,

the data is transformed to stationarity and there are four lags in all models. The complete

list of variables and transformations is given in Appendix C. The variables are ordered in

the same manner as they are listed there. Note that macroeconomic variables are ordered

first and financial variables ordered last.

In this empirical exercise, we produce iterative forecasts for h ∈ {1, 2, 3, 4}-steps-ahead

with evaluation period beginning in 1988Q1. To assess forecasting accuracy, we use root

mean square forecast errors (RMSFEs) for point forecasts and sums of log predictive like-

lihoods (log PLs) or their averages (ALPLs) for density forecasts. The full set of fore-

casting results are available in Appendix D. We summarize these results here using the

one-step ahead log PL which is an approximation to the marginal likelihood, see Geweke

and Amisano (2010).
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3.2 Comparison against Cholesky Approaches

The importance of the ordering of variables in Cholesky-decomposed VARs has been estab-

lished in papers such as Arias et al. (2023) and Chan et al. (2023). Nevertheless it is useful

to reinforce its importance by considering two orderings of the variables. The standard

ordering described in the preceding sub-section and the reverse ordering (RO). We refer to

these two models as BVAR-chol and BVAR-chol-RO. Theory tells us that the BVAR-eig

approach is invariant to ordering so we only present results for the standard ordering for

this model. We also include BVAR-IW. This is equivalent to BVAR-eig and, hence, its

inclusion sheds light only on MCMC efficiency and computational time.

Table 1 presents log PLs for the four models. We consider two data periods: one is

the full sample (1960Q1 to 2021Q3), another is pre-pandemic (1960Q1 to 2018Q4). Both

periods establish an important finding: the log PL for the two Cholesky approaches are

very different from one another and eigen-decomposed approaches have higher log PL than

the Cholesky ones. Thus, at least for this data set, we have evidence that ordering can

have a substantive effect in Cholesky-transformed models and that our approach is superior

to a standard implementation of a Cholesky-based approach. In addition, the numerical

standard errors (NSEs) provide evidence that during the pre-pandemic period, the BVAR-

eig produces a log PL that is equivalent to that of the BVAR-IW model.3 We note that

estimating marginal likelihoods using posterior and predictive simulation methods (as we

do in this paper for all models) is extremely difficult. In this context, we find the results in

Table 1 encouraging where, even with 10, 000 MCMC draws, we are able to obtain results

which clearly distinguish between the models.

It is worth stressing that the joint log PL we use to approximate our marginal likelihoods

evaluates a 20-dimensional predictive density at each point in the forecast window. This

3To compute the NSE, we follow Chan and Eisenstat (2015). We calculate the log PL for 50, 000 draws.
Then instead of one single chain, we run 10 parallel chains with each 5, 000 draws. The parallel chains are
used to compute the NSE.
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requires accurate estimation of the 20 by 20 covariance matrix (all pairwise dependencies)

and precise simulation of the full multivariate density, where small errors in off-diagonal

terms compound in high dimensions. In contrast, marginal ALPLs (which are presented

in Table A-4 of Appendix D) rely on 20 separate 1-dimensional distributions, which are

computationally simpler (only means and variances matter) and less sensitive to small

errors.

Table 1: Log predictive likelihoods.
With pandemic Without pandemic (2018Q4)

Model BVAR-IW BVAR-chol BVAR-chol-RO BVAR-eig BVAR-IW BVAR-chol BVAR-chol-RO BVAR-eig

Log PL -6,739 -7,410 -7,129 -6,780 -3,282 -3,361 -3,337 -3,286
NSE 26.44 25.99 50.84 41.20 2.10 2.54 2.98 2.39

A complete set of forecasting results for these models for our 20 variables, 4 forecast

horizons and two forecast metrics is available in Appendix D. The ALPL results for the

individual variables reinforce the patterns found in the marginal likelihoods. In addition,

the RMSFEs in Appendix D show that the point forecast performance of all approaches

is quite similar. This is consistent with earlier findings in the literature, e.g. Arias et al.

(2023), that ordering issues in VARs have little effect point forecasts.4 Another interest-

ing finding relates to BVAR-chol-RO, which orders the financial variables first and macro

variables last and is found to forecast better than BVAR-chol. This superiority is largely

due to the ability of the reverse-ordered model to provide better forecasts of the financial

variables.

3.3 Further Results with Homoskedastic Models

We have discussed why computational time is an important issue with large VARs and this

is confirmed in Table 2. The codes are run using MATLAB on a desktop with an Intel(R)

Core(TM) i5-9500 CPU @ 3.00GHz processor and 6 cores. In Table 2 we compare the

4We note that our findings relate to unconditional forecasts. Arias et al. (2023) also consider conditional
forecasts and find ordering issues to have a more substantial effect on conditional point forecasts.
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computation time measured in efficiency units (i.e. by multiplying by the effective sample

size so as to produce a measure of time necessary to achieve one i.i.d. draw)5 of BVAR-eig

and BVAR-chol as well as conventional (i.e. not equation-by-equation) estimation using

an inverse-Wishart prior. It can be seen that the computation times of BVAR-eig and

BVAR-chol are roughly the same. Using the inverse Wishart prior leads to computation

time which is almost 10 times as high.

Table 2: The mean computation times (in seconds) to obtain one i.i.d. equivalent draw
using the proposed Eigendecomposition method compared to the Cholesky decomposition
method. All BVARs have n = 20 variables and p = 4 lags.

Computation times Npara
1

IW 1.11 5,224

Cholesky decomposition chol 0.13 5,034

Eigendecomposition eig-BIG 0.16 5,244

1 Npara is the number of parameters (including hyperparameters) that are
estimated in each model.

Appendix D provides additional empirical results illustrating the properties of our ap-

proach. First it provides scatter plots of estimates of the elements of the error covariance

matrix using the BIG prior against the inverse-Wishart prior which confirm empirically

what we already knew theoretically, that they are equivalent apart from MCMC approx-

imation error. Second, it investigates the impact of the prior in the BVAR-chol model

on the ordering issue. Intuitively, since the ordering issue arises due to properties of the

prior, if a relatively noninformative prior is used the impact of the ordering issue should

be lessened. In addition, the ordering issue should be more substantial in larger models.

The results in Appendix D confirm these two conjectures. It considers small (5 variable)

and large (20 variable) models, estimated using the standard and reverse ordering, using a

BVAR-chol with a relatively non-informative prior. Figure A-1 shows that forecast differ-

5The total computational time and effective sample size are based on 10,000 posterior draws. In each
model, there are different numbers of parameters to be estimated. So there will potentially be a different
computational time in terms of efficiency unit for every parameter. We present the mean of them.
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ences (as measured by RMSFE) between the two orders were small (but still present) in

the smaller model, but substantial in the larger model. The appendix also presents ALPLs

using the relatively non-informative prior and finds them to be lower that those produced

using BVAR-eig.

4 Adding SV using the IBIG prior

In the preceding sections we have assumed the error covariance matrix to be homoskedastic.

We showed how the BIG prior on the eigenvalues and eigenmatrix was equivalent to the

inverted-Wishart prior on the reduced form VAR error covariance matrix but allowed for

equation-by-equation estimation. Thus, we did not introduce a new model, but rather

developed much improved computation for an existing model. In this section, we move

beyond the homoskedastic reduced form VAR to allow for the time variation in volatilities

which characterizes most macroeconomic and financial data sets and is so necessary for

density forecasting.6 In this section, we show how the eigendecomposition approach can

be extended to allow for stochastic volatility in BVARs, leading to the BVAR-eigSV model

which is order invariant and allows for equation-by-equation estimation. The introduction

of SV is achieved through our development of the IBIG prior and then allowing for time

variation in its eigenvalues.

To introduce the IBIG prior, note first some restrictive properties of the BIG prior.

The assumption that B = −1
2
Λ−1 implies that the prior for U depends on Λ. In other

words, the eigenvalues don’t simply control the scale of the error covariance matrix Σ, but

also influence its orientation via its entry into the prior for the eigenmatrix. In this sense

the BIG prior (or equivalently the inverse-Wishart distribution) is restrictive. But we can

relax this assumption by following a suggestion of Hoff (2009b) which is to let B be a

6Note that allowing for time variation in the VAR coefficients is also possible. For instance, it is
straightforward to extend the methods in the paper to allow for them to evolve according to random walks.
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matrix of prior hyperparameters which are not linked to Λ. The IBIG prior lets B be

a diagonal matrix of parameters which controls the orientation of U, no longer explicitly

linked to Λ. The role of the latter now solely relates to the scale of the error covariance

matrix. Note that B can be treated as matrix of known prior hyperparameters, but it is

also possible to treat it as unknown and estimate it. We adopt the latter strategy in this

paper. More specifically, we use a Normal prior for B and develop Bayesian methods for

its estimation.

It is useful to provide some more intuition by considering the two dimensional plane.

Any point on it can be denoted by a straight line connecting the origin to the point. The

angle between the line and the X-axis and the length of the line determine the location

of the point. In the eigendecomposition, the eigenvalues give you the length (scale) of

the line and the eigenvectors give you the angle (orientation). The BIG prior imposes a

dependence between the length and the angle that may be undesirable, especially when it

comes to building an econometric model where you want one aspect to change but not the

other. We will introduce models of parameter change in a subsequent section of this paper.

But note that when we use the Cholesky decomposition C, which is the diagonal matrix

of error variances, determines the scale. Papers such as Primiceri (2005) add separate,

independent, random walk processes for L and C. And many other papers, following

Cogley and Sargent (2005), fix L and replace C with a diagonal matrix of SV processes.

In this paper we want to do something similar and, thus, it is important to use the IBIG

prior where the scale is independent of the orientation.7

The BVAR-eigSV model is

yt = a+A1yt−1 + · · ·+Apyt−p +Uεt, εt ∼ N (0,Λt) , (6)

7It is also worth noting that, in a cross-sectional data context, Hoff (2009b) notes that the Wishart
distribution is useful for modelling the covariance of a single population, but is too restrictive with multiple
populations.
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where Λt = diag
(
eh1,t , . . . , ehn,t

)
is diagonal. Notice that the eigenvalues may vary over

time. Each of the log-volatilities follows a stationary AR(1) process:8

hi,t = µi + ϕi(hi,t−1 − µi) + uhi,t, uhi,t ∼ N
(
0, ω2

i

)
, (7)

for t = 2, . . . , T , where |ϕi| < 1 the initial states are specified as hi,1 ∼ N (µi, ω
2
i / (1− ϕ2

i )).

This BVAR-eigSV model has the same advantage as BVAR-cholSV in that it allows for

equation-by-equation estimation (e.g., Koop et al., 2019; Carriero et al., 2019).

The properties of BVAR-eigSV, in terms of the types of time variation in the error co-

variance it allows for, are similar to those of the Cholesky-decomposed version of the model

which allows for AR(1) evolution of the diagonal elements C. That is, the independence

assumption of the IBIG means that each of the elements of Λt is interpreted as a scale

(which evolves over time according to an AR process) and does not affect the orientation

of the eigenvector. However, both BVAR-eigSV and BVAR-cholSV do have the same re-

strictive properties noted by Primiceri (2005) in his discussion of the model used in Cogley

and Sargent (2005). That is, Cogley and Sargent (2005), and the present paper, use a

BVAR-cholSV where L is constant over time. Primiceri (2005) points out some restrictions

of this assumpion. For instance, it implies that the effect of a shock to the ith variable on

the jth variable is constant over time. Primiceri (2005) relaxes this assumption by allowing

for the free elements of L to have AR(1) (or random walk) behavior. Allowing for AR

behavior for the elements of the eigenmatrix U is not sensible since it is an orthogonal

matrix. In sub-section 5.6 we discuss how time variation can be introduced in U.

We also develop methods for prior hyperparameter estimation for the prior on the

eigenmatrix. In the Bayesian VAR literature, it is increasingly common to estimate prior

8Allowing the errors in the volatility processes to be correlated with one another would be a simple
extension of our model. Alternatively, a factor structure could be used to obtain parsimony as in factor
stochastic volatility models (e.g., Pitt and Shephard, 1999; Chib et al., 2006; Kastner and Huber, 2020;
Chan, 2023).
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hyperparameters. For instance, Giannone et al. (2015) develops methods for estimating the

optimal degree of prior shrinkage in Bayesian VARs. This approach relies on the marginal

likelihood, which has a closed form expression for the homoskedastic VAR with natural

conjugate prior. Once SV has been added (or non-conjugate priors are used) as in the

BVAR-cholSV and BVAR-eigSV, the marginal likelihood no longer has a closed form ex-

pression and can be very difficult to calculate. Another method of prior hyperparameter

selection is to adopt a hierarchical prior structure which treats the hyperparameters as

unknown parameters. A good example is Amir-Ahmadi et al. (2020) which uses this strat-

egy in the context of the time-varying parameter VAR. Here we focus on hyperparameter

estimation for the prior for the eigenmatrix U. This matrix is constant over time but we

adopt a similar hierarchical prior strategy. As we shall see, the conditional posteriors which

result have simple forms which leads to a straightforward Gibbs sampling algorithm.

Relative to our earlier BVAR-eig, the new aspects of the MCMC algorithm relate to

Λt as well as U and its prior hyperparameters: B, D and V. Accordingly we will only

discuss the MCMC steps for these, with other steps being unchanged. Λt can also be

easily dealt with since we use standard methods, in particular we implement the auxiliary

mixture sampler of Kim et al. (1998) in conjunction with the precision sampler of Chan

and Jeliazkov (2009).

The prior for U, p(U | D,B,V), takes the Bingham form given in (2). The hyperpa-

rameters in this prior, B, D and V, are treated as unknown parameters. For reasons to

be explained, we do not directly place a prior on these parameters, but work with trans-

formations of them. The prior on the transformed parameters is given in the algorithm.

Noting that, conditional onU, the data provides no additional information forB, D and

V, the full conditional posterior distributions simplify and our MCMC algorithm involves

the following distributions:

Step1 : p (U | Y,A,Λ,D,B,V)
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Step2 : p (B,D | U,V)

Step3 : p (V | U,D,B)

which we discuss in turn in this sub-section.

Step 1 requires only minor modification relative to the homoskedastic case.

Step1 : p (U | Y,A,Λ,D,B,V)

p (U | Y,A,Λ,D,B,V) ∝
n∏

i=1

eu
′
i(biVDV′+

∑T
t=1 −

1
2
λ−1
i,t (y

′
t−x′

tA)′(y′
t−x′

tA))ui ,

which is a Bingham distribution. We use the same strategy of drawing two columns of U

at a time that we used for the homoskedastic case with IBIG prior.

Step2 : p (D,B | U,V)

Since p (D,B | U,V) ∝ p (U | D,B,V) p (D,B | V) the Bingham prior for U is the

key component of this conditional posterior. Note, however, that it involves an integrating

constant, c(D,B) which could be ignored in our earlier derivations of the posterior for U,

but cannot be ignored in Step 2. The resulting conditional posterior is no longer of a con-

venient form. Accordingly, we follow an approximate strategy suggested in Hoff (2009b).

One aspect of this strategy is to use an approximation to the integrating constant, c̃(D,B)

which is given in equation (8) of Hoff (2009b). But this approximation causes an identifica-

tion issue since it implies the scales of D and B are not separately identifiable. Accordingly,

Hoff (2009b) reparameterizes the diagonal matrices D and B as having diagonal elements

ordered and bounded between zero and one times a scalar constant:

diag(D) = (d1, . . . , dn) =
√
w (θ1, . . . , θn) ,

diag(B) = (b1, . . . , bn) =
√
w (β1, . . . , βn) ,
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where w > 0, 1 = θ1 > θ2 > . . . > θn−1 > θn = 0 and 1 = β1 > β2 > . . . > βn−1 > βn = 0.

Note that these restrictions remove the label switching problem which occurred with the

BIG prior since they provide a specific ordering for the columns of the eigenmatrix.

This leads to

p(U | θ, β, w,V) ∝ wm/2e(−wθ′(I−M)β)
∏
i<j

(θi − θj)
1/2 (βi − βj)

1/2 , (8)

where m =

 n

2

 = n(n−1)(n−2)···(n−2+1)
2!

, the matrix M = (V′U) ◦ (V′U), and ◦ is the

Hadamard product operator denoting elementwise multiplication.

It can be seen that we have a Gamma density for w (conditional on other parameters)

which, combined with a Gamma prior leads to a conditional posterior which is Gamma.

The Gamma prior we use is

w ∼ G
(
η0/2, τ

2
0

)
),

where G denotes the Gamma distribution. For the hyperparameters, we follow Hoff (2009b)

and set η0 = 2, τ 20 = 10. This choice will result in an exponential prior distribution that

has its mode at w = 0 but is very diffuse. Thus our prior has a mode at eigenvector

homogeneity but the diffuse feature means we are allowing for a large range of possible

values for eigenvector heterogeneity.

With regard to the prior on p(θ, β), it is taken to be such that 1 > θ2 > . . . > θn−1 > 0

and 1 > β2 > . . . > βn−1 > 0 are two independent sets of order statistics of uniform random

variables on [0, 1]. Multiplying this prior by (8) leads to a conditional posterior that can

easily be sampled from on the grid [0, 1].

To summarize the algorithm to update w, θ and β involves:

Step a: sample w from a Gamma distribution;

Step b: for each i ∈ {2, . . . , n−1} sample θi ∈ (θi−1, θi+1) from the density proportional
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to

e−θi(wβ′M[i,])
∏
j:j ̸=i

|θi − θj|1/2 .

Step c: for each j ∈ {2, . . . , n−1} sample βj ∈ (βj−1, βj+1) from the density proportional

to

e−βj(wM′
[,j]

θ)
∏
i:i ̸=j

|βj − βi|1/2 .

Step3 : p (V | U,D,B)

Since p (V | U,D,B) ∝ p (U | D,B,V) p (V | D,B) the Bingham prior for U again

plays a key role. However, since the integrating constant, c(D,B) does not depend on V,

the complications of Step 2 do not arise. Assuming the prior distribution for V to be the

uniform (invariant) measure on On we obtain

p(V | U,D,B) ∝ etr(BU′VDV′U)

= etr(DV′UBU′V), (9)

which is a Bingham distribution. We use the same strategy of drawing two columns of V

at a time as we do when drawing U.

5 Macroeconomic Forecasting Using the BVAR-eigSV

5.1 Summary and Overview

In this section we carry out a forecasting exercise using the 20 variable data set described

in Section 3. The forecast exercise is set up in the same way as in that section except that

now all of our models include SV. In addition to our BVAR-eigSV and BVAR-cholSV, we

consider two other order-invariant approaches. These are the Order Invariant SV (BVAR-

OISV) model proposed in Chan et al. (2023) and the common stochastic volatility (BVAR-
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CSV) model introduced in Carriero et al. (2016). All information about priors is available

in Appendix B.

Before presenting forecasting results, we present evidence on computation times and on

the flexibility of BVAR-eigSV in modeling the time varying error covariance matrix.

5.2 Computation Times

To our knowledge, the fastest available algorithm for the Cholesky based approach is that

of Chan et al. (2022). It has computational complexity of O(n4) as opposed to the O(n6)

of full system estimation of the reduced form VAR. Hence, we compare our methods to

the fastest algorithm available instead of to full system estimation which has already been

established as being very slow. Chan et al. (2023) develops an extension of this algorithm

for use with BVAR-OISV which is slightly slower. Carriero et al. (2016) is a more restricted

model, involving only one SV process, so it is expected to be much faster.

We report the computational times (in seconds) to obtain one i.i.d. equivalent draw

in Table 3. The computational burden of BVAR-eigSV is larger than that of BVAR-

cholSV and BVAR-CSV but faster than that of BVAR-OISV. The main reason for the

increase in computational burden with the eigendecomposition approach is that the effective

sample size for the volatilities is lower than that of the volatilities in BVAR-cholSV. If

we use the effective sample size only for the constant parameters in the model, we find

computation times for BVAR-eigSV and BVAR-cholSV to be approximately the same.

Thus, the computational burden of BVAR-eigSV is not that great even in large models and

is less than that of another main order-invariant approach, BVAR-OISV.
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Table 3: The mean computation times (in seconds) to obtain one i.i.d. equivalent draw
using the proposed Eigendecomposition method compared to the Cholesky decomposition
method. All BVARs have n = 20 variables and p = 4 lags.

Computation times Npara
1

Cholesky decomposition cholSV 0.68 10,296

Eigendecomposition eigSV 12.73 10,563

Non-decomposition OISV 37.79 10,926
CSV 0.03 2,286

1 Npara is the number of parameters (including hyperparameters) that are
estimated in each model.

5.3 Investigating the Properties of the Time-Varying Error Co-

variance Matrix

Stochastic volatility models such as BVAR-cholSV have well known properties that have

been found empirically useful in macroeconomics. Since our model implies the elements of

Λt are interpreted as scales, we would expect our BVAR-eigSV to be capable of modelling

these properties. To investigate this empirically, Figure 1 plots the time-varying elements

of an important block of the error covariance matrix for BVAR-eigSV, BVAR-cholSV and

BVARcholSV-RO.9 The block involves industrial production, the unemployment rate, PCE

inflation, and the Federal funds rate.

The three lines in each panel of Figure 1 tend to be broadly similar to one another. How-

ever, there are appreciable differences particularly in the covariances and the way volatility

spikes are handles. It is interesting to note that the differences between BVAR-cholSV and

BVAR-cholSV-RO are just as substantive as the differences between either of the Cholesky-

based models and BVAR-eigSV. In fact it is often the case that the estimates produced by

BVAR-eigSV lie between the two Cholesky based approaches. This is yet more evidence

that the choice of ordering matters in large VARs when the Cholesky decomposition is

9This figure excludes data for the pandemic period to make the comparison clearer. Figures based on
the full sample and for small VARs are available in Appendix E.
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used, thus reinforcing the empirical evidence of Hartwig (2020). The main difference is

that BVAR-eigSV is often (but not always) finding larger changes in variances or covari-

ances in unstable times such as the financial crisis or the late 1970s suggesting it is better

at picking up abrupt changes in volatility than the Cholesky-based approach.

Posterior means are plotted in Figure 1. Appendix E2 produces versions of this figure

which contain credible intervals. These suggest that the SV processes for BVAR-eigSV and

BVAR-cholSV are estimated to a similar degree of accuracy.
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Figure 1: Estimates (posterior means) of elements of time-varying covariance matrix. BVAR-
cholSV(blue),BVAR-cholSV-RO(red),BVAR-eigSV(green).

5.4 Results of the Forecasting Exercise

In this subsection, we report results for our four models for different forecast horizons.

Table 4 contains the joint ALPL for all 20 variables. At all horizons, the parsimonious
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BVAR-CSV approach consistently outperforms all other methods. But BVAR-eigSV is

performing better than either of the Cholesky based approaches at short horizons and its

forecast metrics lie between the two Cholesky based approaches at longer horizons.

A comparison of results for BVAR-cholSV and BVAR-cholSV-RO shows the sensitivity

of ordering. It is interesting to note that at short horizons the original ordering of the

variables forecasts better than the reverse ordering. But at longer horizons this finding is

reversed. The eigendecomposition approach, in contrast, appears to offer an intermediate

solution, mitigating some of the extreme sensitivity observed under alternative Cholesky

orderings. The BVAR-OISV model typically exhibits the poorest forecast performance.

Table 4: Joint ALPL for 20 macroeconomic variables.

Models h = 1 h = 2 h = 3 h = 4

BVAR-CSV -4,360 -8,533 -11,118 -11,254
BVAR-cholSV -4,834 -10,358 -12,997 -16,126
BVAR-cholSV-RO -6,350 -10,571 -12,921 -14,964
BVAR-eigSV -5,501 -10,198 -13,223 -15,260
BVAR-OISV -5,640 -11,269 -16,448 -20,056

Figure 2 summarizes the forecasting performance for each individual variable. The left

panel denotes the value of percentage gains in RMSFEs and ALPLs, while the right panel

denotes the significance level according to the Diebold Mariano test.10 The benchmark for

comparison is always the BVAR-CSV model with 20 variables. Each row corresponds to

a specific model: BVAR-cholSV, BVAR-cholSV-RO, and BVAR-eigSV. Green/red means

a model provides more/less accurate forecasts. Intensity of color indicates the degree of

difference. White/pale means the difference is not significantly different from zero.

By comparing the right panels, we further emphasize that point forecasts show relatively

small differences across models, while density forecasts exhibit more pronounced variations.

Within density forecasts, we are finding that the financial variables play an important role in

10A complete table is available in Appendix E.
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generating the differences in forecasting performance across models. For the macroeconomic

variables there are few statistically significant differences in forecast performance.
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Figure 2: Forecasting results from the large BVAR-SV. From Top to Bottom: BVAR-cholSV
against BVAR-CSV, BVAR-cholSV-RO against BVAR-CSV, BVAR-eigSV against BVAR-CSV,
BVAR-OISV against BVAR-CSV. Left: values of percentage gains in RMSFEs and ALPLs. Right:
significance level according to the Diebold Mariano test: Value 0 means not significant. Value 1
means 0.10 significance level for a two-sided Diebold and Mariano(1995) test. Value 2 means 0.05
significance level.

We are finding that the BVAR-CSV performs well jointly even if it does not always

forecast well marginally for the individual variables. This is largely due to the pandemic

period. In particular, the pandemic induced synchronized volatility spikes across macro and

financial variables. BVAR-CSVs common volatility process captured this co-movement well

in a parsimonious fashion, improving the joint ALPL. Pre-pandemic, volatility was less syn-

chronized. In this period, the BVAR-CSV does not perform as well jointly because it forces

all variables to share a single volatility process, missing cross-variable differences. How-
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ever, it works reasonably well for macro variables (which have similar volatility patterns)

but fails for financial variables (which have distinct, erratic volatility). These findings are

supported in Appendix E.6 which presents forecasting results for the pre-pandemic period.

5.5 A scale-adjusted version of BVAR-eigSV (BVAR-SeigSV)

A potential challenge when using the eigendecomposition is that variables exhibiting high

volatility (or variance) can disproportionately influence the covariance matrix, leading to

their dominance in the principal components (eigenvectors). Rather than relying on data

standardization, we propose a scale-adjusted BVAR-eigSV model (BVAR-SeigSV) to mit-

igate the issue of scale sensitivity.

The BVAR-SeigSV model is

yt = a+A1yt−1 + · · ·+Apyt−p + SUεt, εt ∼ N (0,Λt) , (10)

where S is diagonal S = diag (S1, . . . , Sn). Instead of estimating the n parameters in

S, we use a standardization commonly used when doing principal components analysis.

Specifically, let σi denote the sample standard deviation of the variable i, i = 1, . . . , n. We

set Si = δσi and use one scaling parameter δ. A similar idea has been used in Amir-Ahmadi

et al. (2020) where they group parameters into several groups and estimate one parameter

for each group. An inverse gamma prior IG(10, 9) is imposed on parameter δ such that the

prior mean is 1 with 0.1 variance.

Table 5 and Figure 3 present results from our forecasting exercise including this scale-

adjusted model. Table 1 shows that overall, and at all horizons, the scale adjusted version of

eigendecomposition approach consistently outperforms all other methods including BVAR-

CSV. Figure 3 shows that these forecast improvements are mostly for the financial variables

and for the density forecasts. This illustrates the potential importance of adjusting for scale.
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Appendix E3 presents additional evidence on the importance of scale adjustment. It

compares volatility estimates from two BVAR-eigSV models, both not adjusted for scale,

for several key variables. One of the models uses all 20 variables, the other uses 19 variables

dropping the most volatile one. The figures reveal non-negligible differences between the

volatility estimates showing how the inclusion or exclusion of a highly volatile variable can

impact the estimated volatilities for all variables.

Table 5: Joint ALPL for 20 macroeconomic variables.

Models h = 1 h = 2 h = 3 h = 4

BVAR-CSV -4,360 -8,533 -11,118 -11,254
BVAR-eigSV -5,501 -10,198 -13,223 -15,260
BVAR-SeigSV -4,312 -7,191 -9,380 -10,884
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Figure 3: Forecasting results from the large BVAR-SV. Left: percentage gains in point forecast
(RMSFEs). Right: percentage gains in density forecast (ALPLs). Upper: BVAR-SeigSV against
BVAR-CSV. Lower: BVAR-SeigSV against BVAR-eigSV. Left: values of percentage gains in
RMSFEs and ALPLs. Right: significance level according to the Diebold Mariano test: Value 0
means not significant. Value 1 means 0.10 significance level for a two-sided Diebold and Mari-
ano(1995) test. Value 2 means 0.05 significance level.

5.6 Adding Time Variation in the Eigenmatrix U

So far all the models in this paper have assumed U to be constant over time. There are

various ways we could allow for time-variation in U as well. Simply allowing for random
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walk behavior of its elements is undesirable given that U is orthogonal. However, the

model and algorithm developed in Hoff (2009b) does allow for heterogeneous groups of

error covariances. It is a cross-sectional paper and the groups are simply different known

groups of individuals. In a time series context such groups could be different known regimes

each having a constant eigenmatrix. For instance, if a structural break was known to occur

at a particular point in time the two groups would be observations before and after the

break. The extension to unknown groups (e.g. a structural break model with unknown

break date) would involve adding another block to the MCMC algorithm for drawing the

break date. Thus, handling various structural break or regime change models would be

straightforward.

But there are also ways of adding gradual time variation that are similar in spirit to the

random walk or AR time variation used by Primiceri (2005) in the Cholesky-based version

of the model. These draw on theory from the directional statistics literature motivated

by the relationship between the eigenmatrix and orientations and angles. For instance,

Daniels and Kass (1999) and Pourahmadi (2005) reparameterize the n × n orthogonal

matrix by its n(n−1)
2

Givens angles θt = (θ21t, θ31,t, · · · , θn,n−1,t) and then write a first-order

difference equation for {θt}. Related to this, a similar issue arises in the time varying

cointegration literature. In cointegrated models, the matrix of long run multipliers in the

Vector Error Correction model involves a reduced rank structure and is decomposed into

two parts. One of these is an orthogonal matrix. Allowing for time varying cointegation

implies this orthogonal matrix is time varying. Koop et al. (2011) has proposed a way to

add gradual time variation in this orthogonal matrix while still retaining its orthogonality.

This approach could also be used to model gradual time variation in U.

Our BVAR-eigSV imposes a constant impact matrix which as noted, e.g., by Primiceri

(2005) imposes restrictions on the manner which the error covariance matrix evolves. This

raises the empirical question: are these restrictions supported by the data? To address this,
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Figure 5 compares the same block of the error covariance matrix for two order-invariant

models: one featuring a constant impact matrix but time varying volatilities (BVAR-

SeigSV, in blue) and the other incorporating the time-varying impact version of the BVAR-

OISV proposed by Chan et al. (2023) (in red). The shaded regions represent the 84%

credible intervals.11

The two models are producing broadly similar estimates of the the error variances

and covariances. For instance, for the error variances, they both exhibit increases at the

expected places (e.g. during the financial crisis and the inflationary 1970s and inflation

fighting early 1980s) and are all fairly flat during the Great Moderation period. The error

covariances also tend to exhibit changes at these places. But the BVAR-eigSV is better at

picking up abrupt changes. Another finding is that the model with constant impact matrix

produces tighter credible intervals. This suggests that the SV processes in BVAR-eigSV

are quite flexible and adding the flexibility of a time varying impact matrix adds little.
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Figure 4: 84% credible intervals of elements of time-varying covariance matrix (excluding data
for the pandemic period). Blue: BVAR-eigSV. Red: BVAR-OISV with TVP impact.

11In Appendix E5, we also consider the BVAR-cholSV with a time-varying impact matrix and compare
large models against small models.
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Table 6 compares the forecasting performance without/with time-varying impact ma-

trix. We find models without time-varying impact matrix tend to forecast better at shorter

horizons, although at longer horizons BVAR-OISV(TVP) does forecast best.

Table 6: Joint ALPL for 20 macroeconomic variables

Models h = 1 h = 2 h = 3 h = 4

BVAR-eigSV -5,501 -10,198 -13,223 -15,260
BVAR-OISV -5,640 -11,269 -16,448 -20,056
BVAR-OISV(TVP) -6,228 -10,867 -12,115 -14,580

6 Summary and Conclusions

In this paper, we have developed an order-invariant Bayesian approach to VAR estimation

based on the eigendecomposition of the error covariance matrix. We have also extended

this model to alow for stochastic volatility and developed a scale-adjusted version it. There

are many other Bayesian VAR approaches and, of course, the choice between these should

depend on empirical and computational considerations. But we note that, relative to full

system approaches (e.g. based on an inverse Wishart prior), our approach has substantial

computational advantages since it allows for equation by equation estimation. Relative to

approaches which are not order invariant (e.g. those based on the Cholesky decomposition)

our approach has the advantage that it is order invariant. Relative to some of the other

order invariant approaches discussed in Arias et al. (2023), our approach has computational

advantages in that posterior simulation is done using a straightforward Gibbs sampler and

does not involve more sophisticated MCMC methods (e.g. slice sampling) which may fail to

scale well. Relative to the order invariant approach of Chan et al. (2023), the difference with

our approach lies mainly in identification. That is, our BVAR-eigSV is always identified

whereas Chan et al. (2023) is only identified if there n − 1 distinct volatility processes in

the model.

31



References

P. Amir-Ahmadi, C. Matthes, and M.-C. Wang. Choosing prior hyperparameters: With ap-

plications to time-varying parameter models. Journal of Business & Economic Statistics,

38(1):124–136, 2020.

J. E. Arias, J. F. Rubio-Ramirez, and M. Shin. Macroeconomic forecasting and variable

ordering in multivariate stochastic volatility models. Journal of Econometrics, 235(2):

1054–1086, 2023.

M. Banbura, D. Giannone, and L. Reichlin. Large Bayesian vector auto regressions. Journal

of Applied Econometrics, 25(1):71–92, 2010.

C. Bingham. An antipodally symmetric distribution on the sphere. The Annals of Statistics,

pages 1201–1225, 1974.

A. Carriero, T. E. Clark, and M. Marcellino. Common drifting volatility in large Bayesian

VARs. Journal of Business & Economic Statistics, 34(3):375–390, 2016.

A. Carriero, T. E. Clark, and M. Marcellino. Large Bayesian Vector Autoregressions with

stochastic volatility and non-conjugate priors. Journal of Econometrics, 212(1):137–154,

2019.

C. M. Carvalho, N. G. Polson, and J. G. Scott. The horseshoe estimator for sparse signals.

Biometrika, 97(2):465–480, 2010.

J. Chan, A. Carriero, T. E. Clark, and M. Marcellino. Corrigendum to: Large Bayesian

Vector Autoregressions with stochastic volatility and non-conjugate priors. Journal of

Econometrics, 227(2):506–512, 2022.

J. C. Chan. Minnesota-type adaptive hierarchical priors for large Bayesian VARs. Inter-

national Journal of Forecasting, 37(3):1212–1226, 2021.

32



J. C. Chan. Comparing stochastic volatility specifications for large Bayesian VARs. Journal

of Econometrics, 235(2):1419–1446, 2023.

J. C. Chan and E. Eisenstat. Marginal likelihood estimation with the cross-entropy method.

Econometric Reviews, 34(3):256–285, 2015.

J. C. Chan and I. Jeliazkov. Efficient simulation and integrated likelihood estimation in

state space models. International Journal of Mathematical Modelling and Numerical

Optimisation, 1(1-2):101–120, 2009.

J. C. Chan, G. Koop, and X. Yu. Large order-invariant Bayesian VARs with stochastic

volatility. Journal of Business & Economic Statistics, pages 1–13, 2023.

J. C. C. Chan. Asymmetric conjugate priors for large bayesian vars. Quantitative Eco-

nomics, 13(3):–, 2022. URL https://onlinelibrary.wiley.com/doi/abs/.

S. Chib, F. Nardari, and N. Shephard. Analysis of high dimensional multivariate stochastic

volatility models. Journal of Econometrics, 134(2):341–371, 2006.

T. Cogley and T. J. Sargent. Drifts and volatilities: monetary policies and outcomes in

the post wwii us. Review of Economic Dynamics, 8(2):262–302, 2005.

J. L. Cross, C. Hou, and A. Poon. Macroeconomic forecasting with large Bayesian VARs:

Global-local priors and the illusion of sparsity. International Journal of Forecasting, 36

(3):899–915, 2020.

M. J. Daniels and R. E. Kass. Nonconjugate Bayesian estimation of covariance matrices

and its use in hierarchical models. Journal of the American Statistical Association, 94

(448):1254–1263, 1999.
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A Proof of Order Invariance

It is well-known that Bayesian inference in the VAR with inverse-Wishart prior on the

error covariance matrix is order-invariant. Given the equivalence between our BIG prior

and the inverse-Wishart prior it would have sufficed to simply state this fact to establish

order-invariance of our approach. However, in the interest of theoretical rigor and for

other priors involving the eigendecomposition such as the IBIG prior, in this appendix we

provide a proof of order invariance.

A.1 Original and New parameters

Consider Equation 1, which is a standard homoscedastic VAR of order p:

yt = a+A1yt−1 + · · ·+Apyt−p +Uεt, εt ∼ N (0,Λ) .

Suppose we permute the order of the dependent variables. More precisely, let P denote

an arbitrary permutation matrix of dimension n. By left multiplying matrix P, we get:

Pyt = Pb+PA1yt−1 + · · ·+PApyt−p +PUεt, εt ∼ N (0,Λ) .

We define ỹt = Pyt, b̃ = Pb, Ã1 = PA1, . . . , Ãp = PAp, then we can get the new VAR(p)

:

ỹt = b̃+ Ã1yt−1 + · · ·+ Ãpyt−p +PUεt, εt ∼ N (0,Λ) . (11)

It is clear that if we permute the order of the dependent variables via ỹt = Pyt, new

coefficient matrices (b̃ and Ãj) can be obtained by permuting the rows and columns of

original coefficient matrices accordingly.
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Next, we show evidence that the error covariance matrix is also permuted. The error

covariance matrix in Equation 1 is

Σ = UΛU′ =
(
UΛ

1
2

)(
UΛ

1
2

)′
.

The error covariance matrix in Equation (11) is

Σ̃ = PUΛ(PU)′ =
(
PUΛ

1
2P′

)(
PUΛ

1
2P′

)′
=

(
ŨΛ̃

1
2

)(
ŨΛ̃

1
2

)′
.

The second equality is because all permutation matrices are orthogonal matrices, we have

P−1 = P′. New matrices Ũ = PU, Λ̃
1
2 = Λ

1
2P′ mean that the old eigenvector and

eigenvalue matrices are permuted according to P.

Thus far, we have shown that if we permute the order of the dependent variables via

ỹt = Pyt, new parameters can be obtained by permuting the old parameters accordingly.

This is applicable to both coefficient matrices (b̃ and Ãj) and the error covariance matrix

Σ̃. We summarize them in Table A-1.

Table A-1: Original and New parameters

Original New Relationship

Intercepts b b̃ b̃ = Pb

Coefficients Aj Ãj Ãj = PAj

Eigenvectors U Ũ Ũ = PU

Eigenvalues Λ
1
2 Λ̃

1
2 Λ̃

1
2 = Λ

1
2P′

Next, we prove that the conditional likelihood function implied by this new ordering is

the same as that of the original ordering.
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A.2 Original and New conditional likelihoods

We first stack the original dependent variables yt and new dependent variables ỹt over

time.

We stack the original dependent variables into a T × n matrix Y so that its t-th row is

y′
t. Now, letX be a T×k matrix of regressors, where the t-th row is x′

t =
(
1,y′

t−1, . . . ,y
′
t−p

)
.

Next, let A = (b,A1, . . . ,Ap)
′ denote the k × n matrix of VAR coefficients. Then, we can

write the original VAR(p) as follows:

Y = XA+ EU′, (12)

where E is a T × n matrix of innovations in which the t-th row is ε′t. It follows that

vec(EU′) ∼ N (0, (UΛU′)⊗ IT ) .

Stacking the new dependent variables ỹt into Ỹ = (ỹ1, . . . , ỹT )
′, Next, let Ã =

(
b̃, Ã1, . . . , Ãp

)′

denote the k×n matrix of VAR coefficients. Then, we can write the new VAR(p) as follows:

Ỹ = XÃ+ EŨ′, (13)

where E is a T × n matrix of innovations in which the t-th row is ε′t. It follows that

vec(EŨ′) ∼ N
(
0, (ŨΛ̃Ũ′)⊗ IT

)
.

Table A-2 summarizes their relationships. Next, we prove that p(Ỹ | Ã, Ũ, Λ̃) = p(Y |

A,U,Λ). We first show the conditional likelihood of the original ordering, then we show

the conditional likelihood of the new ordering.
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Table A-2: Original and New matrices

Original New Relationship

Dependent variables Y Ỹ Ỹ = YP′

Coefficients A Ã Ã = AP′

Eigenvectors U Ũ Ũ = PU

Eigenvalues Λ
1
2 Λ̃

1
2 Λ̃

1
2 = Λ

1
2P′

Conditional Likelihoods p(Y | A,U,Λ) p(Ỹ | Ã, Ũ, Λ̃) same

A.3 Likelihoods of the original ordering

Likelihoods of the original ordering are given by

p(Y | A,U,Λ) = (2π)−
Tn
2 |UΛU′|−

T
2 e−

1
2
tr((Y−XA)(UΛU′)−1(Y−XA)′), (14)

= (2π)−
Tn
2 |Λ|−

T
2 e−

1
2
tr((Y−XA)(UΛU′)−1(Y−XA)′), (15)

= (2π)−
Tn
2

n∏
j=1

λ
−T/2
j e−

1
2
tr((Y−XA)(UΛU′)−1(Y−XA)′), (16)

= (2π)−
Tn
2

n∏
j=1

λ
−T/2
j e−

1
2
tr((Y−XA)UΛ−1U′(Y−XA)′), (17)

= (2π)−
Tn
2

n∏
j=1

λ
−T/2
j e−

1
2
tr(UΛ−1U′(Y−XA)′(Y−XA)). (18)

Proof from (14) to (15):

Since det(BC) = det(B) det(C), and det (B−1) = 1
det(B)

, we can get |UΛU′|−T
2 = (|U||Λ||U′|)−

T
2 =

(|U||Λ||U−1|)−
T
2 =

(
|U||Λ| 1

|U|

)−T
2
= |Λ|−T

2 .

Proof from (15) to (16):

Matrix Λ is diagonal, and for a diagonal matrix B, det(B) = b11b22 · · · bnn =
∏n

i=1 bii, so

|Λ|−T
2 =

(∏n
j=1 λj

)−T
2
=

∏n
j=1 λ

−T/2
j .

Proof from (16) to (17):

Matrix U is orthogonal, which means that U−1 = U′.

Then (UΛU′)−1 = (U′)−1(Λ)−1(U)−1 = UΛ−1U′.
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Proof from (17) to (18): tr(BCD) = tr(CDB) = tr(DBC)

A.4 Likelihoods of the new ordering

Likelihoods of the new ordering are given by

p(Ỹ | Ã, Ũ, Λ̃) = (2π)−
Tn
2 |(ŨΛ̃Ũ′)|−

T
2 e−

1
2
tr((Ỹ−XÃ)(ŨΛ̃Ũ′)−1(Ỹ−XÃ)′), (19)

= (2π)−
Tn
2 |Λ|−

T
2 e−

1
2
tr((Ỹ−XÃ)(ŨΛ̃Ũ′)−1(Ỹ−XÃ)′), (20)

= (2π)−
Tn
2

n∏
j=1

λ
−T/2
j e−

1
2
tr((Ỹ−XÃ)(PUΛU′P′)−1(Ỹ−XÃ)′), (21)

= (2π)−
Tn
2

n∏
j=1

λ
−T/2
j e−

1
2
tr((Ỹ−XÃ)PUΛ−1U′P′(Ỹ−XÃ)′), (22)

= (2π)−
Tn
2

n∏
j=1

λ
−T/2
j e−

1
2
tr((Y−XA)UΛ−1U′(Y−XA)′), (23)

= (2π)−
Tn
2

n∏
j=1

λ
−T/2
j e−

1
2
tr(UΛ−1U′(Y−XA)′(Y−XA)), (24)

= p(Y | A,U,Λ).

Proof from (19) to (20):

Since det(BC) = det(B) det(C), and det (B−1) = 1
det(B)

, we can get |(ŨΛ̃Ũ′)|−T
2 =

|PUΛ
1
2P′P(Λ

1
2 )′U′P′|−T

2 = |PUΛU′P′|−T
2 = (|P||U||Λ||U′||P′|)−

T
2 = (|P||U||Λ||U−1||P−1|)−

T
2 =(

|P||U||Λ|| 1
|U| |

1
|P|

)−T
2
= |Λ|−T

2 .

Proof from (20) to (21): ŨΛ̃Ũ′ = PUΛ
1
2P′P(Λ

1
2 )′U′P′ = PUΛU′P′.

Proof from (21) to (22): Same as Proof from (16) to (17).

Proof from (22) to (23):

From Table A-2, Ỹ = YP′, Ã = AP′.

So Ỹ −XÃ = (Y −XA)P′, (Ỹ −XÃ)′ = P(Y −XA)′.

Then

(Ỹ − XÃ)PUΛ−1U′P′(Ỹ − XÃ)′ = (Y − XA)P′PUΛ−1U′P′P(Y − XA)′ = (Y −
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XA)UΛ−1U′(Y −XA)′.

Proof from (23) to (24): Same as Proof from (17) to (18).

Combining Section A.1 and Section A.2, we provide evidence that if we permute the

order of the dependent variables via ỹt = Pyt, new parameters can be obtained by permut-

ing the old parameters accordingly. This is applicable to both coefficient matrices (b̃ and

Ãj) and the error covariance matrix Σ̃. And the conditional likelihood function implied by

this new ordering is the same as that of the original ordering.

B Priors

For all models, we use the same prior for the VAR coefficients. Any choice could be made

for this without altering the main messages of the paper. We choose the Minnesota-type

Horseshoe prior of Chan et al. (2023). Please note that this prior is put on the parameters of

the reduced form VAR coefficients Ai, not the Eigen- or Cholesky-transformed coefficients.

Let αi denote the VAR coefficients in the i-th equation, i = 1, . . . , n. We consider the

Minnesota-type horseshoe prior proposed in Chan et al. (2023), which can impose cross-

variable shrinkage and have substantial mass around 0. For αi,j, the j-th coefficient in the

i-th equation, the prior is:

(αi,j | κ1, κ2, ψi,j) ∼ N (0, κi,jψi,jCi,j) ,√
ψi,j ∼ C+(0, 1),

√
κ1,

√
κ2 ∼ C+(0, 1),

where C+(0, 1) denotes the standard half-Cauchy distribution. κ1 and κ2 are the global

variance components that are common to, respectively, coefficients of own and other lags,

whereas each ψi,j is a local variance component specific to the coefficient αi,j. The constants
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Ci,j are obtained as

Ci,j =


1
l2
, for the coefficient on the l-th lag of variable i,

s2i
l2s2j

, for the coefficient on the l-th lag of variable j, j ̸= i,

where s2r denotes the sample variance of the residuals from an AR(4) model for the variable

r, r = 1, . . . , n.

For priors on the error covariance matrix (or its related parameters), the associated

parameters vary across models. To ensure clarity, we discuss them on a model-by-model

basis. In the following, we define

et = yt − (a+A1yt−1 + · · ·+Apyt−p).

B.1 BVAR-IW

In the BVAR-IW model where et ∼ N (0,Σ), the prior is directly imposed on the error

covariance matrix Σ. We assume an inverse-Wishart distribution Σ ∼ IW(v,S0), where

IW denotes the inverse-Wishart distribution with degrees of freedom v and a positive

definite scale matrix S0. We set v = n + 3 where n is the number of variables (20 in our

main analysis), and set S0 = diag(s21, ..., s
2
n) where s

2
r is defined above.

B.2 BVAR-chol

In the BVAR-chol model where et ∼ N (0,Σ), the prior is imposed on the Cholesky-

transformed parameters. Rewrite et = L−1εt, εt ∼ N (0, C) where L is a lower triangular

matrix with ones on the diagonal and free elements Li,j, and C is a diagonal matrix denoted
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by σ2
i . The priors are

σ2
i ∼ IG

(
v + i− n

2
,
s2i
2

)
, i = 1, . . . , n,

Li,j ∼ N
(
0,
s2i
s2j

)
, 1 ⩽ j < i ⩽ n, i = 2, . . . , n.

B.3 BVAR-eig

In the BVAR-eig model, the prior is imposed on the eigen-transformed parameters which

we call the BIG prior. Rewrite et = Uεt, εt ∼ N (0,Λ) where U is the eigenmatrix, and

Λ is a diagonal matrix which contains eigenvalues λi. The priors are

U ∼ B (D,B,V) ,

where B denotes the Bingham distribution. V and D are obtained as the eigenmatrix and

eigenvalues from the eigendecomposition of S0. Since S0 is diagonal, this implies that we

can set V to be an identity matrix V = In, and set D = S0. Therefore, in the BIG prior,

we do not estimate the hyperparameters V and D. The BIG prior sets B = −1
2
Λ−1.

For the eigenvalues, BIG uses the inverse-Gamma distribution

λi ∼ IG
(
v + n− 1

2
,
u′i (VDV′)ui

2

)
, i = 1, . . . , n.

B.4 Treatment of SV

In the next part of this appendix, we consider several models which have SV. In all such

models, each of the log-volatilities follows a stationary AR(1) process:

hi,t = µi + ϕi(hi,t−1 − µi) + uhi,t, uhi,t ∼ N
(
0, ω2

i

)
, (25)
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For the coefficient ϕi, we assume a normal prior µi ∼ N (0.95, 0.052) and impose |ϕi| < 1 to

ensure stationarity. The stationary distributions have nonzero means µi and we assume a

normal prior µi ∼ N (0, 1). The initial conditions follow the stationary distributions hi,1 ∼

N (µi, ω
2
i /(1− ϕ2

i ). The error variances follow an independent inverse gamma distribution

ω2
i ∼ IG(3, 0.05) such that the prior mean is 0.025.

B.5 BVAR-CSV

In the BVAR-CSV model, we write et ∼ N
(
0, ehtΣ

)
where eht is the latent stochastic

volatility and Σ is an n× n matrix.

For Σ, it follows an inverse-Wishart distribution Σ ∼ IW(v,S1). We set v = n+3. For

S1, we follow Amir-Ahmadi et al. (2020) by adopting a hierarchical modeling approach:

S1 = diag(κ)vS0diag(κ) where S0 = diag(s21, ..., s
2
n). The hyperparameter κ is an n × 1

vector. We estimate the vector κ. We assume it has an independent inverse-Gamma prior

κ ∼ IG(1, 0.1). We draw κ with a random walk Metropolis-Hasting step.

B.6 BVAR-cholSV

In the BVAR-cholSV model, the error term is specified as:

et = Lεt, εt ∼ N (0, Ct) .

The time-varying matrix Ct = diag(eh1,t , ..., ehn,t). The constant matrix L is lower-

triangular with ones on the diagonal. Let Li,j denote the free elements. Following Chan

(2021), we employ a Minnesota-type horseshoe prior for these elements. Specifically, the
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prior structure is defined as:

(Li,j | κ, ψi,j) ∼ N (0, κψi,jCi,j) ,√
ψi,j ∼ C+(0, 1),

√
κ ∼ C+(0, 1),

where Ci,j =
s2i
s2j

and we estimate κ and ψi,j.

B.7 BVAR-eigSV

In the BVAR-eigSV model, we write

et = Uεt, εt ∼ N (0,Λt) .

The time-varying matrix Λt = diag(eh1,t , ..., ehn,t). The constant matrix U is the eigen-

matrix. The prior on U is

U ∼ B (D,B,V) ,

where the hyperparameters D, B, and V are estimated as described in Section 4 of the

main paper.

B.8 BVAR-SeigSV

In the BVAR-SeigSV model, the error term is specified as:

et = SUεt, εt ∼ N (0,Λt) .

The matrix S is defined as S = δdiag (σ1, . . . , σn) where σi denotes the standard devia-
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tion of variable yi,1:T . δ is a scaling parameter with an inverse Gamma prior IG(10, 9). The

time-varying matrix Λt and the constant matrix U are the same as that in BVAR-eigSV

model above.

B.9 BVAR-OISV

In the BVAR-OISV model as proposed in Chan et al. (2023), the error term is specified as

et = Fεt, εt ∼ N (0, Ct) .

The time-varying matrix Ct = diag(eh1,t , ..., ehn,t). The constant matrix F is a full

matrix. Following Chan (2021), we use a Minnesota-type horseshoe prior. Specifically, the

prior structure is defined as:

(Fi,j | κ, ψi,j) ∼ N (0, κψi,jCi,j) ,√
ψi,j ∼ C+(0, 1),

√
κ ∼ C+(0, 1),

where Ci,j =
s2i
s2j

and we estimate κ and ψi,j.

B.10 BVAR-OISV(TVP)

In the BVAR-OISV(TVP) model as proposed in Chan et al. (2023), it is the same as

BVAR-OISV except the full matrix F . Instead of having a constant F , the model allows

for time variation in its elements. Following their approach, each element fi,j,t evolves as a

random walk

fi,j,t = fi,j,t−1 + ei,j,t, ei,j,t ∼ N
(
0, ω2

i,j

)
.
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We estimate the error variance ω2
i,j and assume an inverse-gamma prior ω2

i,j ∼ IG (0, s2i ) .

For macroeconomic variables (the first ten variables in the dataset), we set s2i = 0.001,

whereas for financial variables (the remaining ten variables), we impose a tighter prior

with s2i = 0.0005. This distinction reflects the differing dynamics between the two groups:

macroeconomic variables typically exhibit higher persistence and smoother trends, justi-

fying a more flexible prior to accommodate larger adjustments in the impact matrix. In

contrast, financial variables are often subject to more erratic volatility and short-lived

shocks, necessitating stricter constraints on their evolution to avoid overfitting transient

fluctuations.

C Data

Table A-3: Description of variables used in the forecasting application

Variable Mnemonic Transformation

Real Gross Domestic Product GDPC1 400∆ log
Personal Consumption Expenditures PCECC96 400∆ log
Industrial Production Index INDPRO 400∆ log
Industrial Production: Final Products IPFINAL 400∆ log
All Employees: Total nonfarm PAYEMS 400∆ log
All Employees: Manufacturing MANEMP 400∆ log
Civilian Employment CE16OV 400∆ log
Civilian Labor Force Participation Rate CIVPART no transformation
Civilian Unemployment Rate UNRATE no transformation
Nonfarm Business Section: Hours of All Persons HOANBS 400∆ log
Housing Starts: Total HOUST 400∆ log
New Private Housing Units Authorized by Building Permits PERMIT 400∆ log
Personal Consumption Expenditures: Chain-type Price index PCECTPI 400∆ log
Consumer Price Index for All Urban Consumers: All Items CPIAUCSL 400∆ log
Nonfarm Business Section: Real Output Per Hour of All Persons OPHNFB 400∆ log
Effective Federal Funds Rate FEDFUNDS no transformation
3-Month Treasury Bill: Secondary Market Rate TB3MS no transformation
1-Year Treasury Constant Maturity Rate GS1 no transformation
10-Year Treasury Constant Maturity Rate GS10 no transformation
Moody’s Seasoned Baa Corporate Bond Yield Relative to
Yield on 10-Year Treasury Constant Maturity BAA10YM no transformation
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D Homoskedastic Models: More comparisons

D.1 Homoskedastic Models: Forecast Performance in absolute

values

Table A-4: RMSFE and ALPL of 20 macroeconomic time series.
Variables Models RMSFE ALPL

h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

GDPC1 BVAR-IW 4.958 4.946 4.952 4.941 -3.097 -3.255 -3.239 -3.254
BVAR-chol 5.581 4.954 4.951 4.953 -3.354 -3.472 -3.482 -3.497
BVAR-chol-RO 4.986 4.928 4.928 4.925 -3.188 -3.375 -3.365 -3.391
BVAR-eig 4.987 4.980 4.993∗ 4.963 -3.126 -3.369 -3.363 -3.327

PCECC96 BVAR-IW 5.154 5.348 5.329 5.296 -3.310 -3.813 -3.858 -3.856
BVAR-chol 5.781 5.323 5.387 5.343 -3.625 -3.973 -4.057 -4.056
BVAR-chol-RO 5.222 5.363 5.350 5.289 -3.420 -3.966 -4.062 -4.040
BVAR-eig 5.150 5.350 5.331 5.303 -3.474 -4.052 -4.098 -4.046

INDPRO BVAR-IW 7.949 7.902 7.904 7.910 -3.503 -3.657 -3.690 -3.698
BVAR-chol 8.650 7.952 7.933 7.924 -3.636 -3.867 -3.876 -3.874
BVAR-chol-RO 8.112 7.893 7.884 7.870 -3.600 -3.776 -3.790 -3.796
BVAR-eig 7.925 7.921 7.940 7.926 -3.508 -3.782 -3.798 -3.811

IPFINAL BVAR-IW 8.289 8.020 8.062 8.079 -3.595 -3.749 -3.786 -3.785
BVAR-chol 9.393 8.082 8.148 8.107 -3.847 -3.953 -4.009 -4.006
BVAR-chol-RO 8.353 8.033 8.075 8.066 -3.709 -3.885 -3.934 -3.915
BVAR-eig 8.285 8.041 8.093 8.096 -3.624 -3.856 -3.884 -3.901

PAYEMS BVAR-IW 5.476 5.226 5.242 5.266 -7.305 -7.972 -8.860 -9.112
BVAR-chol 6.630 5.486 5.288 5.305 -9.636 -11.087 -11.056 -11.594
BVAR-chol-RO 5.557 5.238 5.259 5.287 -8.426 -9.897 -10.615 -10.047
BVAR-eig 5.476 5.220 5.235 5.264 -8.033 -9.174 -9.406 -9.471

MANEMP BVAR-IW 4.792 4.708 4.834 4.876 -3.052 -3.206 -3.354 -3.387
BVAR-chol 5.391 5.006 5.007 5.021 -3.266 -3.450 -3.687 -3.723
BVAR-chol-RO 4.902 4.807 4.949∗ 4.975∗∗ -3.172 -3.364 -3.533 -3.520
BVAR-eig 4.749 4.689 4.829 4.866 -3.060 -3.235 -3.447 -3.505

CE16OV BVAR-IW 5.562 5.645 5.637 5.639 -6.105 -7.095 -7.199 -7.315
BVAR-chol 6.371 5.727 5.632 5.641 -7.533 -8.693 -8.787 -8.232
BVAR-chol-RO 5.548 5.639 5.649 5.636 -6.834 -8.542 -8.587 -8.968
BVAR-eig 5.538∗∗ 5.631 5.635 5.634 -6.057 -7.546 -7.874 -7.953

CIVPART BVAR-IW 0.256 0.339 0.396 0.456 -0.201 -1.468 -2.472 -3.455
BVAR-chol 0.274 0.355 0.411 0.481 -0.318 -1.471 -2.516 -3.585
BVAR-chol-RO 0.255 0.339 0.401 0.463 -0.247 -1.407 -2.153 -2.838
BVAR-eig 0.255 0.334 0.388 0.444 0.112 -0.797 -1.516 -2.189

UNRATE BVAR-IW 0.934 1.199 1.354 1.475 -4.505 -7.650 -10.633 -13.079
BVAR-chol 1.065 1.392 1.570 1.686 -6.179 -10.142 -14.525 -17.799
BVAR-chol-RO 0.943 1.221 1.388 1.514 -5.968 -9.854 -12.594 -14.512
BVAR-eig 0.934 1.202 1.352 1.469 -2.733 -4.899 -6.727 -8.891

HOANBS BVAR-IW 6.542 6.438 6.436 6.450 -4.106 -4.504 -4.626 -4.695
BVAR-chol 7.325 6.515 6.452 6.491 -4.762 -5.117 -5.231 -5.535
BVAR-chol-RO 6.622 6.467 6.473 6.478 -4.335 -4.939 -5.176 -5.001
BVAR-eig 6.481∗ 6.404 6.413 6.423∗ -4.163 -4.768 -5.052 -5.084

1 Notes: The bold figure indicates the best model in each case. ∗, ∗∗ and ∗ ∗ ∗ denote, respectively, 0.10, 0.05 and 0.01
significance level for a two-sided Diebold and Mariano(1995) test.The benchmark model in the Diebold Mariano test is BVAR-
IW with 20 variables.

xiv



Table A-4: Continued: RMSFE and ALPL of 20 macroeconomic time series.
Variables Models RMSFE ALPL

h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

HOUST BVAR-IW 27.521 31.746 31.371 31.407 -4.741 -5.064 -5.090 -5.108
BVAR-chol 27.285 32.040 32.011∗ 31.910 -4.737 -5.051 -5.064 -5.064
BVAR-chol-RO 27.304 32.038 31.877∗ 31.836 -4.725 -4.999 -5.000∗ -5.001∗∗

BVAR-eig 27.877 31.410 31.392 31.727 -4.759 -5.262∗∗ -5.323∗∗ -5.381∗∗

PERMIT BVAR-IW 29.156 29.656 29.433 29.417 -4.804 -4.933 -4.940 -4.952
BVAR-chol 29.576 29.931 30.105 30.054 -4.827 -4.877 -4.888 -4.892∗

BVAR-chol-RO 29.183 29.889 29.911 29.925 -4.796 -4.845∗ -4.849∗∗ -4.851∗∗

BVAR-eig 29.742 29.321 29.191 29.689 -4.793 -5.039∗ -5.079∗∗ -5.131∗∗

PCECTPI BVAR-IW 1.620 1.817 1.820 1.879 -1.934 -2.307 -2.415 -2.589
BVAR-chol 1.666 1.908 1.927∗ 1.951 -1.968 -2.383 -2.494∗ -2.650
BVAR-chol-RO 1.625 1.841 1.866 1.921 -2.012 -2.370 -2.447 -2.600
BVAR-eig 1.634 1.857 1.878∗ 1.941∗∗ -1.997 -2.386 -2.492 -2.682

CPIAUCSL BVAR-IW 2.101 2.299 2.317 2.337 -2.177 -2.522 -2.621 -2.773
BVAR-chol 2.142 2.415 2.390 2.413 -2.192 -2.571 -2.611 -2.768
BVAR-chol-RO 2.080 2.309 2.304 2.329 -2.264 -2.607 -2.668 -2.796
BVAR-eig 2.116 2.359∗ 2.382∗ 2.417∗∗ -2.264 -2.656 -2.747 -2.936

OPHNFB BVAR-IW 2.804 2.856 2.830 2.839 -2.468 -2.492 -2.493 -2.499
BVAR-chol 2.848 2.847 2.795 2.811 -2.470 -2.488 -2.484 -2.494
BVAR-chol-RO 2.788 2.795∗ 2.769∗ 2.790 -2.431 -2.451 -2.452 -2.462
BVAR-eig 2.820 2.865 2.859 2.881 -2.457 -2.485 -2.495 -2.514∗

FEDFUNDS BVAR-IW 0.380 0.737 1.064 1.382 -0.934 -1.720 -2.482 -3.236
BVAR-chol 0.439 0.811 1.139 1.453 -0.957 -1.762 -2.535 -3.299
BVAR-chol-RO 0.363 0.716 1.040 1.348 -0.834∗∗∗ -1.607∗∗∗ -2.231∗∗ -2.764∗∗

BVAR-eig 0.366 0.739 1.073 1.408 -0.863∗∗ -1.705 -2.440 -3.140

TB3MS BVAR-IW 0.380 0.695 0.980 1.258 -0.800 -1.559 -2.329 -3.109
BVAR-chol 0.419∗∗ 0.741 1.022 1.300 -0.834∗∗ -1.586 -2.330 -3.113
BVAR-chol-RO 0.367 0.672 0.951 1.230 -0.716∗∗∗ -1.426∗∗∗ -2.043∗∗ -2.616∗∗

BVAR-eig 0.375 0.688 0.979 1.267 -0.753∗∗ -1.507 -2.230∗∗ -2.926∗∗∗

GS1 BVAR-IW 0.436 0.767 1.052 1.331 -0.843 -1.635 -2.440 -3.255
BVAR-chol 0.463∗∗ 0.802∗ 1.090 1.368 -0.879∗∗ -1.641 -2.414 -3.225
BVAR-chol-RO 0.431 0.767 1.060 1.343 -0.769∗∗ -1.534∗∗∗ -2.198∗∗ -2.795∗∗

BVAR-eig 0.430 0.764 1.056 1.349 -0.798∗∗ -1.600 -2.360∗∗ -3.089∗∗∗

GS10 BVAR-IW 0.382 0.622 0.787 0.944 -0.516 -1.516 -2.425 -3.286
BVAR-chol 0.399∗∗ 0.652∗ 0.817 0.965 -0.568∗∗ -1.516 -2.353 -3.125∗

BVAR-chol-RO 0.384 0.630 0.798 0.951 -0.487 -1.428 -2.110∗∗∗ -2.671∗∗∗

BVAR-eig 0.382 0.627 0.798 0.964 -0.501 -1.487 -2.307∗∗ -3.048∗∗

BAA10YM BVAR-IW 0.347 0.529 0.639 0.709 -0.371 -1.472 -2.288 -2.879
BVAR-chol 0.356 0.550 0.667 0.734∗ -0.399 -1.568 -2.432 -3.086
BVAR-chol-RO 0.352 0.534 0.644 0.716 -0.448 -1.559 -2.261 -2.810
BVAR-eig 0.350 0.531 0.639 0.708 -0.324 -1.336 -2.000 -2.504

1 Notes: The bold figure indicates the best model in each case. ∗, ∗∗ and ∗ ∗ ∗ denote, respectively, 0.10, 0.05 and 0.01 significance level for a
two-sided Diebold and Mariano(1995) test.The benchmark model in the Diebold Mariano test is BVAR-IW with 20 variables.

D.2 A Cholesky Non-informative prior

The ordering issue is due to the prior on the lower-triangular matrix L. This suggests

that a relatively non-informative prior on the lower-triangular matrix L might be close to

being ordering invariant at least in small models where the need for prior information is

less.12 Here we show that this is true to some extent in small VARs, but as the dimension

increases, the ordering issue becomes more severe. This can be seen in the following figure

which contains two panels. Both are from a Cholesky-based BVAR using a relatively nonin-

formative prior (BVAR-chol-Noninfo) but with the variables ordered in two different ways.

The relatively non-informative prior we use is p (Li,j) ∝ N (0, 104). The only difference is

12We are grateful to the referee for pointing this out.
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the dimension n. In Panel A, n = 5. In Panel B, n = 20. Within each panel, point forecast

(in terms of percentage gains in RMSFE of one ordering relative to the other) and density

forecast (in terms of percentage gains in ALPL of one ordering relative to the other) are

reported. Note that, if the two different ways of ordering the data were giving the same

results then each panel would be white. For point forecast, they are. However, for density

forecast, they are not. So clearly ordering issues matter even with a noninformative prior.

But they matter even more in larger models.
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Figure A-1: Forecasting results from the large BVAR with Non-informative prior on the
impact matrix. Panel A: n = 5. Panel B: n = 20. Within each panel, point forecast (in
terms of percentage gains in RMSFE of one ordering relative to the other) and density
forecast (in terms of percentage gains in ALPL of one ordering relative to the other) are
reported.

Next we compare the Log marginal likelihood values of BIG prior and Cholesky Non-
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informative prior in Table A-5. As is shown, the data supports the BVAR-eig model with

the use of the noninformative leading to substantial deterioration in this metric.

Table A-5: Log marginal likelihood values.

Models log ML

BVAR-chol-Noninfo -7,454
BVAR-chol-Noninfo-RO -7,093
BVAR-eig -6,780

D.3 A comparison between BVAR-eig and BVAR-chol

Here we compare the Eigendecomposition and Cholesky decomposition using a small BVAR

with the four core macroeconomic time series. The two decompositions provide similar

forecast results.

Table A-6: RMSFE and ALPL of four core macroeconomic time series.
Variables Models RMSFE ALPL

h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

Industrial Production BVAR-chol 8.752 8.586 8.286 8.2151 -3.582 -3.933 -3.972 -3.973
BVAR-chol-RO 8.733 8.576 8.283 8.230∗ -3.582 -3.936 -3.979 -3.995
BVAR-eig 8.573 8.585 8.342 8.329 -3.563 -3.937 -3.978 -3.993

Unemployment Rate BVAR-chol 1.215 1.526 1.760 1.900 -4.663 -8.324 -11.146 -13.114
BVAR-chol-RO 1.214 1.525 1.753 1.887 -4.714 -8.127 -10.801 -13.104
BVAR-eig 1.198 1.482 1.684 1.797 -4.511 -7.907 -10.532 -12.316

PCE inflation BVAR-chol 1.734 1.988 2.002 2.085 -1.959 -2.440 -2.611 -2.868
BVAR-chol-RO 1.736 1.991 2.005 2.082 -1.960 -2.456 -2.617 -2.868
BVAR-eig 1.716 1.952 1.973 2.047 -1.943 -2.428 -2.578 -2.818

Federal funds rate BVAR-chol 0.523 0.937 1.249 1.542 -0.976 -1.915 -2.718 -3.544
BVAR-chol-RO 0.525 0.939 1.250 1.543 -0.974 -1.918∗ -2.724∗ -3.553∗∗

BVAR-eig 0.545 0.993 1.305 1.589 -0.989 -1.918 -2.682 -3.474

1 Results are based on small models where n = 4. Notes: The bold figure indicates the best model in each case. ∗, ∗∗ and ∗ ∗ ∗ denote,
respectively, 0.10, 0.05 and 0.01 significance level for a two-sided Diebold and Mariano(1995) test. The benchmark model in the Diebold
Mariano test is BVAR-chol.

D.4 A comparison between IW prior and eigen priors

Here, we illustrate the equivalence of parameter estimates using scatter plots. Figure A-2

presents the posterior mean of the error covariance matrix, comparing BVAR-eig against

the BVAR-IW model.

xvii



-500 0 500 1000 1500
Inverse Wishart

-500

0

500

1000

1500

B
in

gh
am

-I
nv

er
se

-G
am

m
a

Figure A-2: Scatter plots of the posterior mean estimates of VAR error covariance matrix.
The Dashed line is the diagonal line.

E Adding Stochastic Volatility

E.1 Effective Sample Size

To figure out what has slowed the computational time of eigSV and OISV down relative to

the Cholesky based approach, we plot a figure for effective sample size (ESS). The figure

presents ESS comparisons across different parameter groups: the overall ESS (Panel A)

which includes all parameters, the ESS for volatilities h1:T,i (Panel B) and the ESS for

other parameters (Panel C). For each panel, we compare four models: the BVAR-cholSV

(Column (i)), the BVAR-eigSV (Column (ii)), the BVAR-SeigSV (Column (iii)) and the

BVAR-OISV (Column (iv)). Each column is a boxplot of the MCMC effective sample size

in 12,000 posterior draws. The results indicate that the discrepancy primarily arises from

the volatility parameters, with eigSV exhibiting a higher ESS than OISV.
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Figure A-3: Panel A: Overall ESS. Panel B: ESS for volatilities. Panel C: ESS for other
parameters. Column (i): the BVAR-cholSV. Column (ii): the BVAR-eigSV. Column (iii):
the BVAR-SeigSV. Column (iv): the BVAR-OISV.

E.2 Investigating the Properties of the Time-Varying Error Co-

variance Matrix

E.2.1 Complementing Figure 2

Here we report on comparing models with a constant impact matrix. The four models we

compare are: a BVAR-eigSV, a BVAR-SeigSV, a BVAR-cholSV, and a BAR-cholSV with

reverse orderings. We first look at large models with 20 variables, then small variables with

the four key variables, and finally a large and a small model. The block involves industrial

production, the unemployment rate, PCE inflation, and the Federal funds rate.

Comparing large models
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The following figure shows the full sample estimates of elements of time-varying covari-

ance matrix as sequence: full sample and credible intervals.
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Figure A-4: Estimates of elements of time-varying covariance matrix (full sample). BVAR-
cholSV(blue), BVAR-cholSV-RO(red), BVAR-eigSV(green).
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Figure A-5: Credible intervals of elements of time-varying covariance matrix. BVAR-
cholSV (blue), BVAR-cholSV-RO (red).
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Figure A-6: Credible intervals of elements of time-varying covariance matrix. BVAR-eigSV
(blue), BVAR-SeigSV (red).

Comparing small models
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Figure A-7: Estimates of elements of time-varying covariance matrix (excluding data for
the pandemic period). BVAR-cholSV(blue), BVAR-cholSV-RO(red), BVAR-eigSV(green).
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Figure A-8: Estimates of elements of time-varying covariance matrix (full sample). BVAR-
cholSV(blue), BVAR-cholSV-RO(red), BVAR-eigSV(green).

Comparing a large BVAR-eigSV and a small BVAR-cholSV
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Figure A-9: Credible intervals of elements of time-varying covariance matrix (excluding
data for the pandemic period). A small BVAR-cholSV (blue) and a large BVAR-eigSV
(red).
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Figure A-10: Credible intervals of elements of time-varying covariance matrix. A small
BVAR-cholSV (blue) and a large BVAR-eigSV (red).

E.3 Impact of highly volatile series

From a large BVAR-eigSV:
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Figure A-11: 84% credible intervals of elements of time-varying covariance matrix (exclud-
ing data for the pandemic period). Without S&P 500 price index (blue) and with S&P 500
price index (red).
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Figure A-12: 84% credible intervals of elements of time-varying covariance matrix. Without
S&P 500 price index (blue) and with S&P 500 price index (red).

To see what will happen with a small VAR, the following figure plots two estimates:

one is the small BVAR-SeigSV with four core variables. Another is the small BVAR-eigSV

with five variables (four core variables plus the transformed S&P 500 price index). To show

the patterns before pandemic more clearly, we plot the following figure.
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Figure A-13: 84% credible intervals of elements of time-varying covariance matrix (exclud-
ing data for the pandemic period). Without S&P 500 price index (blue) and with S&P 500
price index (red).
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Figure A-14: 84% credible intervals of elements of time-varying covariance matrix. Without
S&P 500 price index (blue) and with S&P 500 price index (red).
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E.4 Forecasting performance

Table A-7: RMSFE and ALPL of 20 macroeconomic time series.
Variables Models RMSFE ALPL

h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

GDPC1 BVAR-CSV 5.901 5.010 4.970 4.936 -2.542 -3.527 -3.644 -3.581
BVAR-cholSV 4.921 4.910 4.913 4.911 -2.454 -2.887 -3.287 -3.145
BVAR-cholSV-RO 5.043 4.947 4.938 4.943 -2.674 -3.125 -3.352 -3.364
BVAR-eigSV 4.980 4.922 4.914 4.918 -2.444 -2.672 -2.872 -2.928
BVAR-SeigSV 5.000 4.937 4.928 4.932 -2.402 -2.730 -2.847 -2.813
BVAR-OISV 5.031 4.949 4.951 4.951 -2.724 -3.269 -3.382 -3.426
BVAR-OISV(TVP) 6.610 5.483 5.151 5.116 -2.471 -3.032 -3.262 -3.200

PCECC96 BVAR-CSV 5.602 5.389 5.335 5.283 -2.560 -3.853 -4.108 -3.850
BVAR-cholSV 5.327 5.370 5.373 5.302 -2.387 -3.466 -4.207 -4.069
BVAR-cholSV-RO 5.290 5.384 5.373 5.294 -2.513 -3.289 -3.751 -3.763
BVAR-eigSV 5.132 5.395 5.377 5.285 -2.370 -2.901 -3.350 -3.490
BVAR-SeigSV 5.342 5.421 5.424 5.329 -2.341 -3.003 -3.193 -3.070
BVAR-OISV 5.343 5.405 5.411 5.320 -2.419 -3.134 -3.647 -3.891
BVAR-OISV(TVP) 7.325 5.763 5.388 5.433 -2.386 -3.047 -3.258 -3.467

INDPRO BVAR-CSV 8.264 7.782 7.892 8.000 -2.973 -3.951 -4.350 -4.282
BVAR-cholSV 7.976 7.908 7.904 7.894 -3.081 -3.463 -3.581 -3.615
BVAR-cholSV-RO 8.185 7.968 7.993 8.016 -3.180 -3.743 -3.896 -3.967
BVAR-eigSV 8.064 7.930 7.901 7.929 -3.025 -3.342 -3.537 -3.649
BVAR-SeigSV 7.936 7.896 7.901 7.930 -2.961 -3.318 -3.414 -3.444
BVAR-OISV 8.118 7.964 7.954 7.978 -3.258 -3.692 -3.813 -3.886
BVAR-OISV(TVP) 9.352 8.032 7.900 8.092 -2.988 -3.306 -3.463 -3.612

IPFINAL BVAR-CSV 9.077 8.087 8.056 8.237 -3.005 -3.937 -4.401 -4.348
BVAR-cholSV 8.248 8.027 8.047 8.051 -3.092 -3.457 -3.623 -3.662
BVAR-cholSV-RO 8.499 8.080 8.131 8.143 -3.171 -3.578 -3.758 -3.773
BVAR-eigSV 8.247 8.043 8.059 8.073 -3.013 -3.293 -3.516 -3.627
BVAR-SeigSV 8.096 8.037 8.069 8.088 -2.963 -3.279 -3.410 -3.407
BVAR-OISV 8.351 8.087 8.114 8.140 -3.245 -3.668 -3.795 -3.720
BVAR-OISV(TVP) 12.631 8.575 8.137 8.244 -2.950 -3.475 -3.736 -3.863

PAYEMS BVAR-CSV 6.000 5.383 5.201 5.192 -3.962 -13.481 -13.019 -11.084
BVAR-cholSV 6.144 5.410 5.314 5.335 -2.799 -5.726 -9.216 -8.406
BVAR-cholSV-RO 6.386 5.504 5.323 5.334 -4.570 -9.245 -10.300 -14.145
BVAR-eigSV 6.210 5.411 5.298 5.327 -1.829 -3.847 -5.063 -5.076
BVAR-SeigSV 6.146 5.436 5.326 5.350 -1.798 -5.004 -4.799 -4.537
BVAR-OISV 6.328 5.483∗ 5.352 5.369 -7.000 -12.029 -8.374 -10.247
BVAR-OISV(TVP) 7.221 5.792 5.652 5.466 -3.423 -6.717 -7.180 -5.390

MANEMP BVAR-CSV 5.346 4.911 4.629 4.654 -2.223 -3.535 -3.976 -3.985
BVAR-cholSV 5.021 4.868 4.935 4.951 -2.435 -3.038 -3.148 -3.372
BVAR-cholSV-RO 4.953 4.840 4.848 4.888 -2.274 -3.431 -3.566 -3.985
BVAR-eigSV 4.897 4.817 4.920 4.955 -2.249 -2.754 -3.095 -3.219
BVAR-SeigSV 4.767 4.777 4.911 4.958 -2.218 -2.764 -2.943 -3.040
BVAR-OISV 4.852 4.778 4.890 4.958 -2.633 -3.344 -3.398 -3.771
BVAR-OISV(TVP) 6.154 5.756 5.105 4.808 -2.207 -3.008 -3.559 -3.646

CE16OV BVAR-CSV 6.151 5.772 5.665 5.593 -3.536 -7.694 -8.198 -6.272
BVAR-cholSV 5.799 5.721 5.658 5.635 -3.102 -4.938 -4.713 -5.779
BVAR-cholSV-RO 5.777 5.668 5.668 5.630 -3.618 -4.998 -4.802 -4.597
BVAR-eigSV 5.784 5.685 5.650 5.643 -2.423 -3.827 -4.707 -4.851
BVAR-SeigSV 5.790 5.713 5.655 5.648 -2.242 -4.243 -4.452 -4.036
BVAR-OISV 5.871 5.734 5.651 5.641 -3.068 -4.934 -4.956 -5.806
BVAR-OISV(TVP) 7.110 6.166 5.939 5.689 -2.515 -4.012 -4.081 -4.955

CIVPART BVAR-CSV 0.280 0.362 0.434 0.511 0.173 -1.005 -1.726 -2.248
BVAR-cholSV 0.263 0.353 0.419 0.488 0.141 -1.153 -2.086 -3.040
BVAR-cholSV-RO 0.618 0.485∗ 0.495∗∗ 0.507 -0.234 -1.010 -1.632 -2.307
BVAR-eigSV 0.264 0.355 0.422 0.493 0.063 -0.889 -1.833 -2.694
BVAR-SeigSV 0.265 0.358 0.428 0.498 0.203 -0.694 -1.362 -1.975
BVAR-OISV 0.263 0.352 0.413 0.479 0.139 -1.111 -1.882 -2.861
BVAR-OISV(TVP) 0.372 0.460 0.614 0.685 0.150 -0.432 -0.922 -1.330

UNRATE BVAR-CSV 0.971 1.284 1.447 1.530 -1.510 -8.460 -11.670 -10.328
BVAR-cholSV 0.975 1.290 1.476 1.602∗ -1.284 -4.776 -6.291 -8.011
BVAR-cholSV-RO 0.986 1.265 1.411 1.522 -2.709 -6.465 -8.429 -10.513
BVAR-eigSV 0.971 1.269 1.435 1.560 -0.385 -2.722 -5.446 -7.071
BVAR-SeigSV 0.976 1.298 1.479 1.613∗ -0.230 -3.277 -4.132 -5.179
BVAR-OISV 0.992 1.307∗ 1.485 1.611∗ -4.121 -8.383 -9.210 -12.722
BVAR-OISV(TVP) 1.132 1.551 1.642 1.726 -0.808 -2.544 -4.532 -4.547

HOANBS BVAR-CSV 7.252 6.588 6.382 6.332 -2.912 -5.155 -5.680 -4.998
BVAR-cholSV 6.793 6.538 6.482 6.467 -2.801 -4.104 -4.686 -4.663
BVAR-cholSV-RO 6.725 6.503 6.448 6.463 -2.614 -3.526 -3.986 -4.410
BVAR-eigSV 6.754 6.525 6.467 6.466 -2.490 -2.968 -3.522 -3.584
BVAR-SeigSV 6.716 6.554 6.483 6.482 -2.454 -3.338 -3.333 -3.289
BVAR-OISV 6.841 6.554 6.482 6.484 -3.371 -4.990 -4.974 -5.205
BVAR-OISV(TVP) 8.102 7.112 6.814 6.382 -2.389 -3.054 -3.860 -4.181
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Table A-7: RMSFE and ALPL of 20 macroeconomic time series.
Variables Models RMSFE ALPL

h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

HOUST BVAR-CSV 30.351 32.727 34.549 32.377 -4.713 -5.098 -5.219 -5.325
BVAR-cholSV 27.276∗ 31.793 31.552 31.688 -4.663 -5.090 -5.132 -5.174
BVAR-cholSV-RO 27.780∗ 31.787 31.500 31.534 -4.658 -4.977 -5.012 -5.058∗∗

BVAR-eigSV 27.227∗ 31.829 31.627 31.712 -4.674 -5.112 -5.168 -5.223
BVAR-SeigSV 28.143 32.201 31.958 32.045 -4.673 -4.979 -5.012 -5.043∗∗

BVAR-OISV 27.804 32.008 31.677 31.672 -4.660 -4.969 -4.998∗ -5.036∗∗

BVAR-OISV(TVP) 34.489 53.415 63.443 38.171∗ -4.796 -5.413∗∗ -5.833∗∗∗ -6.015∗∗

PERMIT BVAR-CSV 33.263 30.360 31.479 30.528 -4.660 -4.981 -5.073 -5.244
BVAR-cholSV 29.134 29.587 29.651 29.776 -4.713 -4.804∗∗ -4.838∗∗ -4.850∗∗

BVAR-cholSV-RO 29.332 29.633 29.556 29.682 -4.653 -4.804 -4.866 -4.938∗

BVAR-eigSV 28.850 29.799 29.730 29.835 -4.675 -4.811 -4.864∗ -4.908∗∗

BVAR-SeigSV 29.588 29.965 29.955 29.981 -4.686 -4.773∗∗ -4.815∗∗ -4.838∗∗

BVAR-OISV 29.431 29.927 29.796 29.825 -4.663 -4.817 -4.861 -4.922∗

BVAR-OISV(TVP) 34.580 40.020 45.796 34.815 -4.806∗∗ -5.225∗∗ -5.545∗∗ -5.816∗

PCECTPI BVAR-CSV 1.896 1.958 1.922 2.151 -1.836 -2.215 -2.340 -2.712
BVAR-cholSV 1.551 1.754 1.749 1.800 -1.759 -2.123 -2.242 -2.465
BVAR-cholSV-RO 1.626 1.813 1.831 1.864 -1.775 -2.134 -2.247 -2.496
BVAR-eigSV 1.530 1.717 1.728 1.774 -1.719∗∗ -2.035∗ -2.188 -2.385
BVAR-SeigSV 1.557 1.741 1.749 1.792 -1.718∗ -1.994∗ -2.076∗∗ -2.239
BVAR-OISV 1.562 1.728 1.732∗ 1.761 -1.733∗ -2.037∗ -2.145∗ -2.337
BVAR-OISV(TVP) 2.580 2.631 2.441 2.599 -1.881 -2.234 -2.355 -2.620

CPIAUCSL BVAR-CSV 2.332 2.512 2.452 2.723 -2.119 -2.471 -2.596 -2.918
BVAR-cholSV 2.041 2.249 2.216∗ 2.252 -2.013 -2.310∗ -2.379∗ -2.555
BVAR-cholSV-RO 2.115 2.319 2.321 2.354 -2.004 -2.302 -2.397 -2.617
BVAR-eigSV 2.039 2.230 2.216 2.247 -1.996∗ -2.238∗ -2.364∗∗ -2.511
BVAR-SeigSV 2.066 2.237 2.226 2.252 -1.985∗ -2.197∗∗ -2.251∗∗ -2.376
BVAR-OISV 2.077 2.235 2.220∗ 2.235 -1.993 -2.246∗∗ -2.324∗∗ -2.476
BVAR-OISV(TVP) 2.844 3.505 2.966 3.287 -2.086 -2.403 -2.576 -2.845

OPHNFB BVAR-CSV 2.913 3.115 3.142 2.864 -2.507 -2.629 -2.655 -2.699
BVAR-cholSV 2.756 2.894 2.768 2.771 -2.435 -2.476∗∗ -2.489∗∗ -2.502∗∗∗

BVAR-cholSV-RO 2.743 2.868 2.799 2.812 -2.455 -2.483∗∗ -2.503∗∗ -2.516∗∗

BVAR-eigSV 2.742 2.848 2.777 2.786 -2.430∗ -2.463∗∗ -2.471∗∗ -2.480∗∗∗

BVAR-SeigSV 2.732 2.818 2.775 2.798 -2.426∗ -2.461∗∗ -2.472∗∗ -2.488∗∗∗

BVAR-OISV 2.731 2.860 2.788 2.792 -2.433 -2.475∗∗ -2.481∗∗ -2.489∗∗∗

BVAR-OISV(TVP) 3.286 3.156 3.385 3.139 -2.489 -2.611 -2.687 -2.749

FEDFUNDS BVAR-CSV 0.594 1.116 1.519 1.842 -0.625 -1.697 -2.610 -3.446
BVAR-cholSV 0.321 0.623 0.928 1.236 -0.025∗ -1.710∗ -3.306∗∗ -4.814∗∗

BVAR-cholSV-RO 0.393 0.753 1.094 1.429 -0.529 -1.706 -2.866 -3.937∗

BVAR-eigSV 0.351 0.680 1.004 1.317 -0.381 -1.539 -2.776∗ -3.973∗

BVAR-SeigSV 0.348 0.668 0.985 1.294 -0.454 -1.388∗∗ -2.188∗∗ -2.884∗∗

BVAR-OISV 0.337 0.647 0.956 1.265 -0.104 -1.573 -2.993∗ -4.319∗

BVAR-OISV(TVP) 0.792 1.672 2.248 2.488 -0.806∗∗ -1.968∗∗ -2.726 -3.282

TB3MS BVAR-CSV 0.520 0.955 1.313 1.606 -0.553 -1.679 -2.603 -3.445
BVAR-cholSV 0.333 0.625 0.903 1.179 -0.098∗ -1.657∗ -3.138∗∗ -4.523∗∗

BVAR-cholSV-RO 0.421 0.759 1.061 1.357 -0.594 -1.729 -2.807 -3.840
BVAR-eigSV 0.366 0.681 0.971 1.249 -0.334 -1.643 -3.015∗ -4.326∗∗

BVAR-SeigSV 0.356 0.662 0.948 1.223 -0.406 -1.393∗ -2.244∗ -2.963∗

BVAR-OISV 0.353 0.653 0.935 1.214 -0.160 -1.679 -3.089∗∗ -4.372∗∗

BVAR-OISV(TVP) 0.650 1.352 1.760 2.035 -0.718 -1.735 -2.347∗ -2.893∗∗

GS1 BVAR-CSV 0.662 1.130 1.477 1.740 -0.726 -1.866 -2.743 -3.536
BVAR-cholSV 0.406 0.719 0.989 1.256 -0.356 -1.749 -2.996∗ -4.137∗

BVAR-cholSV-RO 0.479 0.838 1.137 1.432 -0.745 -1.833 -2.812 -3.761
BVAR-eigSV 0.421 0.744 1.023 1.295 -0.494 -1.806 -3.107∗ -4.349∗∗

BVAR-SeigSV 0.413 0.732 1.004 1.272 -0.555 -1.523∗∗ -2.312∗ -2.980∗

BVAR-OISV 0.418 0.736 1.010 1.282 -0.467 -1.732 -2.855 -3.878
BVAR-OISV(TVP) 0.924 1.784 2.191 2.301 -0.835 -1.797 -2.375∗ -2.894∗∗

GS10 BVAR-CSV 0.469 0.774 0.998 1.162 -0.641 -1.756 -2.501 -3.124
BVAR-cholSV 0.367 0.592 0.735 0.866 -0.450 -1.728 -2.622 -3.358
BVAR-cholSV-RO 0.391 0.636 0.798 0.948 -0.557 -1.711 -2.602 -3.433
BVAR-eigSV 0.367 0.593 0.737 0.870 -0.448∗ -1.687 -2.651 -3.489
BVAR-SeigSV 0.365 0.591 0.731 0.861 -0.471∗∗ -1.406∗ -2.021∗ -2.499∗

BVAR-OISV 0.371 0.596 0.742 0.876 -0.485∗ -1.592 -2.408 -3.102
BVAR-OISV(TVP) 0.618 1.126 1.355 1.454 -0.667 -1.745∗ -2.489 -3.041

BAA10YM BVAR-CSV 0.374 0.577 0.693 0.771 -0.301 -1.568 -2.384 -3.156
BVAR-cholSV 0.336∗ 0.519 0.627 0.704 -0.188 -1.451 -2.387 -3.198
BVAR-cholSV-RO 0.359 0.557 0.687 0.785 -0.216 -1.452 -2.375 -3.289
BVAR-eigSV 0.337∗ 0.520 0.626 0.699 -0.152 -1.234∗ -2.069 -2.728
BVAR-SeigSV 0.333∗ 0.518 0.627 0.702 -0.111 -1.056 -1.648 -2.110
BVAR-OISV 0.339∗ 0.526 0.639 0.722 -0.159 -1.304 -2.186 -2.922
BVAR-OISV(TVP) 0.480 0.716 0.742 0.769 -0.233 -1.257∗ -1.921 -2.472

1 Notes: The bold figure indicates the best model in each case. ∗, ∗∗ and ∗ ∗ ∗ denote, respectively, 0.10, 0.05 and 0.01 significance level for a
two-sided Diebold and Mariano(1995) test.The benchmark model in the Diebold Mariano test is BVAR-CSV with 20 variables.
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E.5 Adding Time Variation in the Eigenmatrix U: Complement-

ing Figure 5

Below are more comparisons against models with a time-varying impact matrix. First, we

compare large models with 20 variables: BVAR-eigSV and BVAR-cholSV(TVP) with 20

variables. Then, we compare a large and a small model: BVAR-eigSV with 20 variables

and BVAR-OISV(TVP) with 4 variables, and BVAR-eigSV with 20 variables and BVAR-

cholSV(TVP) with 4 variables.

Comparing large models

Figure A-15: 84% credible intervals of elements of time-varying covariance matrix (exclud-
ing data for the pandemic period). Blue: BVAR-eigSV. Red: BVAR-cholSV with TVP
impact.

Comparing a large model and a small model
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Figure A-16: 84% credible intervals of elements of time-varying covariance matrix (exclud-
ing data for the pandemic period). Blue: BVAR-eigSV with 20 variables. Red: BVAR-
OISV with TVP impact and 4 variables.

Figure A-17: 84% credible intervals of elements of time-varying covariance matrix (exclud-
ing data for the pandemic period). Blue: BVAR-eigSV with 20 variables. Red: BVAR-
cholSV with TVP impact and 4 variables.
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E.6 Pre-pandemic forecasting results

In this subsection, we report forecasting performance using data before pandemic, more

specifically, the forecasting period is up to 2018Q4. We first provide the joint forecasting

performance, followed by forecasting individual variables.

Table A-8: Joint ALPL for 20 macroeconomic variables (up to 2018Q4).

Models h = 1 h = 2 h = 3 h = 4

BVAR-CSV -3,166 -4,191 -4,971 -5,726
BVAR-cholSV -2,801 -4,632 -6,255 -7,991
BVAR-cholSV-RO -2,984 -4,397 -5,679 -7,190
BVAR-eigSV -2,908 -4,600 -6,043 -7,583
BVAR-OISV -2,756 -4,703 -6,714 -9,125
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Figure A-18: Forecasting results from the large BVAR-SV (up to 2018Q4). From Top to Bottom:
BVAR-cholSV against BVAR-CSV, BVAR-cholSV-RO against BVAR-CSV, BVAR-eigSV against
BVAR-CSV, BVAR-OISV against BVAR-CSV. Left: values of percentage gains in RMSFEs and
ALPLs. Right: significance level according to the Diebold Mariano test: Value 0 means not
significant. Value 1 means 0.10 significance level for a two-sided Diebold and Mariano(1995) test.
Value 2 means 0.05 significance level.
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Table A-9: RMSFE and ALPL of 20 macroeconomic time series.
Variables Models RMSFE ALPL

h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

GDPC1 BVAR-CSV 2.086 2.449 2.631 2.686 -2.149 -2.385 -2.514 -2.658
BVAR-cholSV 2.424 2.450 2.505 2.511 -2.236 -2.300 -2.364 -2.408
BVAR-cholSV-RO 2.360 2.464 2.545 2.551 -2.280 -2.343 -2.388 -2.414∗∗

BVAR-eigSV 2.425 2.455 2.513 2.513 -2.259 -2.318 -2.388 -2.415∗∗

BVAR-OISV 2.441 2.489 2.562 2.568 -2.268 -2.338 -2.391 -2.418∗∗

PCECC96 BVAR-CSV 1.886 1.940 2.009 2.199 -2.005 -2.140 -2.245 -2.440
BVAR-cholSV 1.958 1.916 1.963 2.129 -2.024 -2.050 -2.099 -2.215∗∗

BVAR-cholSV-RO 1.914 1.906 1.966 2.141 -2.028 -2.065 -2.120 -2.240∗∗

BVAR-eigSV 1.978 1.943 1.989 2.161 -2.069 -2.094 -2.141∗∗ -2.238∗∗

BVAR-OISV 1.977 1.954 2.018 2.189 -2.053 -2.084 -2.135 -2.240∗∗

INDPRO BVAR-CSV 3.843 5.029 5.417 5.616 -2.685 -3.110 -3.396 -3.582
BVAR-cholSV 4.987 5.333 5.343 5.350 -2.871 -3.025 -3.104 -3.161∗∗

BVAR-cholSV-RO 4.637 5.314 5.421 5.472 -2.847 -3.081 -3.188 -3.263
BVAR-eigSV 5.098 5.342 5.336 5.378 -2.855 -3.067 -3.196 -3.318
BVAR-OISV 4.992 5.377 5.392 5.436 -2.897 -3.101 -3.195 -3.225∗∗

IPFINAL BVAR-CSV 3.740 4.703 5.013 5.262 -2.677 -3.023 -3.256 -3.447
BVAR-cholSV 4.680 4.736 4.851 4.898 -2.848 -2.932 -3.017 -3.067∗∗

BVAR-cholSV-RO 4.458 4.784 4.943 5.018 -2.834 -2.971 -3.074 -3.132
BVAR-eigSV 4.711 4.749 4.875 4.925 -2.825 -2.968 -3.107 -3.221
BVAR-OISV 4.693 4.822 4.950 5.019 -2.882 -2.993 -3.089 -3.122∗∗

PAYEMS BVAR-CSV 0.776 1.231 1.524 1.713 -1.081 -1.787 -2.327 -2.714
BVAR-cholSV 1.175 1.581 1.749 1.869 -1.426∗ -1.908 -2.163 -2.380
BVAR-cholSV-RO 1.021∗ 1.454 1.688 1.838 -1.316 -1.912 -2.314 -2.616
BVAR-eigSV 1.152 1.575 1.764 1.890 -1.365∗ -1.850 -2.166 -2.433
BVAR-OISV 1.153 1.574 1.767 1.903 -1.336 -1.872 -2.183 -2.433

MANEMP BVAR-CSV 1.609 2.607 3.172 3.470 -1.891 -2.511 -2.944 -3.226
BVAR-cholSV 2.535 3.333 3.692 3.819 -2.167∗ -2.531 -2.760 -2.880
BVAR-cholSV-RO 2.197 3.111 3.553 3.722 -2.028 -2.542 -2.866 -3.020
BVAR-eigSV 2.556 3.327 3.719 3.822 -2.103∗ -2.481 -2.763 -2.949
BVAR-OISV 2.511 3.283 3.674 3.809 -2.035 -2.512 -2.825 -2.976

CE16OV BVAR-CSV 1.331 1.595 1.700 1.810 -1.721 -2.026 -2.246 -2.397
BVAR-cholSV 1.646 1.770 1.821 1.870 -1.848 -1.984 -2.069 -2.131
BVAR-cholSV-RO 1.462 1.671 1.747 1.826 -1.734 -1.934 -2.050 -2.159
BVAR-eigSV 1.646 1.811 1.842 1.891 -1.809 -1.953 -2.032 -2.121
BVAR-OISV 1.586 1.773 1.819 1.874 -1.816 -1.974 -2.057 -2.133

CIVPART BVAR-CSV 0.149 0.205 0.239 0.284 0.452 -0.248 -0.791 -1.326
BVAR-cholSV 0.156 0.237∗∗ 0.301∗∗ 0.370∗ 0.452 -0.534 -1.408∗ -2.258∗∗

BVAR-cholSV-RO 0.250∗∗ 0.322∗∗ 0.356∗∗ 0.393∗∗ -0.004 -0.777 -1.361 -1.994∗

BVAR-eigSV 0.160 0.246∗ 0.315∗ 0.390∗ 0.376∗∗∗ -0.475 -1.279 -2.091∗

BVAR-OISV 0.156 0.234∗ 0.295∗ 0.361∗ 0.430 -0.549 -1.388∗ -2.189∗∗

UNRATE BVAR-CSV 0.200 0.390 0.580 0.779 0.396 -0.992 -2.439 -4.000
BVAR-cholSV 0.239∗ 0.459 0.678 0.887 0.135 -1.188 -2.662 -4.284
BVAR-cholSV-RO 0.221 0.429 0.634 0.833 0.237 -1.212 -2.830 -4.641
BVAR-eigSV 0.235 0.453 0.671 0.879 0.161 -1.147 -2.618 -4.264
BVAR-OISV 0.229 0.448 0.669 0.877 0.219 -1.229 -2.787 -4.555

HOANBS BVAR-CSV 1.714 2.260 2.519 2.693 -2.007 -2.296 -2.511 -2.718
BVAR-cholSV 2.636 2.803 2.883 2.891 -2.249 -2.372 -2.454 -2.499∗

BVAR-cholSV-RO 2.372∗ 2.626 2.788 2.856 -2.175 -2.351 -2.488 -2.560
BVAR-eigSV 2.705 2.828 2.893 2.904 -2.227 -2.346 -2.464 -2.543
BVAR-OISV 2.588 2.799 2.899 2.909 -2.203 -2.357 -2.465 -2.517
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Table A-9: Continued: RMSFE and ALPL of 20 macroeconomic time series.
Variables Models RMSFE ALPL

h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

HOUST BVAR-CSV 27.211 29.426 28.829 28.378 -4.647 -4.948 -5.012 -5.131
BVAR-cholSV 24.750 29.215 28.753 28.857 -4.599 -4.980 -5.004 -5.041
BVAR-cholSV-RO 25.347 29.341 28.738 28.710 -4.572 -4.846 -4.871 -4.904∗∗

BVAR-eigSV 24.833 29.250 28.930 28.914 -4.585 -4.969 -5.015 -5.057
BVAR-OISV 25.358 29.485 28.957 28.887 -4.575 -4.836 -4.851 -4.878∗∗

PERMIT BVAR-CSV 29.506 28.791 27.604 27.810 -4.616 -4.910 -4.946 -5.125
BVAR-cholSV 27.597 28.289 28.371 28.404 -4.687 -4.755∗∗ -4.783∗∗ -4.793∗∗

BVAR-cholSV-RO 28.240 28.454 28.320 28.328 -4.603 -4.726 -4.791 -4.846
BVAR-eigSV 27.562 28.512 28.522 28.523 -4.629 -4.731∗ -4.791 -4.824∗

BVAR-OISV 28.113 28.757 28.577 28.567 -4.610 -4.743 -4.786 -4.822∗

PCECTPI BVAR-CSV 1.561 1.779 1.779 1.848 -1.788 -2.169 -2.296 -2.704
BVAR-cholSV 1.496 1.721 1.693 1.729 -1.697∗ -2.080 -2.181 -2.406
BVAR-cholSV-RO 1.575 1.775 1.774 1.770 -1.718 -2.086 -2.193 -2.423
BVAR-eigSV 1.470∗ 1.683∗ 1.675 1.703∗ -1.658∗∗ -1.991 -2.137 -2.326
BVAR-OISV 1.509 1.690∗ 1.669 1.678∗ -1.670∗ -1.986∗ -2.075∗ -2.266

CPIAUCSL BVAR-CSV 2.043 2.280 2.251 2.301 -2.069 -2.406 -2.534 -2.899
BVAR-cholSV 1.959 2.169 2.117 2.124∗ -1.944∗ -2.247∗ -2.304∗ -2.484
BVAR-cholSV-RO 2.029 2.236 2.219 2.193 -1.929 -2.234 -2.319 -2.533
BVAR-eigSV 1.952∗∗ 2.156∗ 2.123 2.119∗ -1.924∗ -2.170 -2.290∗∗ -2.435
BVAR-OISV 1.998 2.153∗ 2.114 2.091∗ -1.923∗ -2.178∗ -2.242∗ -2.395

OPHNFB BVAR-CSV 2.630 2.624 2.662 2.654 -2.437 -2.534 -2.567 -2.613
BVAR-cholSV 2.587 2.602 2.623 2.636 -2.371 -2.384∗∗ -2.401∗∗ -2.417∗∗∗

BVAR-cholSV-RO 2.601 2.627 2.645 2.671 -2.404 -2.410∗ -2.432∗ -2.454∗∗

BVAR-eigSV 2.603 2.614 2.633 2.644 -2.385 -2.400∗∗ -2.412∗∗ -2.425∗∗∗

BVAR-OISV 2.583 2.627 2.646 2.650 -2.393 -2.407∗∗ -2.423∗∗ -2.431∗∗∗

FEDFUNDS BVAR-CSV 0.439 0.816 1.109 1.406 -0.580 -1.618 -2.503 -3.332
BVAR-cholSV 0.320 0.628 0.938 1.249 0.000 -1.564 -3.085∗∗ -4.406∗∗

BVAR-cholSV-RO 0.386 0.744 1.083 1.411 -0.509 -1.608 -2.690 -3.684
BVAR-eigSV 0.349 0.683 1.009 1.324 -0.370 -1.461 -2.610 -3.720
BVAR-OISV 0.336 0.653 0.966 1.277 -0.078 -1.433 -2.773∗ -3.942∗∗

TB3MS BVAR-CSV 0.411 0.746 1.011 1.282 -0.509 -1.608 -2.507 -3.339
BVAR-cholSV 0.339 0.636 0.916 1.192 -0.092∗∗ -1.564∗ -2.964∗∗ -4.215∗∗

BVAR-cholSV-RO 0.420 0.756 1.054 1.342 -0.585 -1.653 -2.661 -3.623
BVAR-eigSV 0.371 0.690 0.982 1.258 -0.326 -1.578 -2.862∗ -4.077∗

BVAR-OISV 0.359 0.664 0.948 1.226 -0.155∗ -1.589 -2.925∗∗ -4.123∗∗

GS1 BVAR-CSV 0.483 0.845 1.123 1.407 -0.682 -1.798 -2.649 -3.428
BVAR-cholSV 0.413 0.728 0.996 1.259 -0.345 -1.647 -2.800 -3.836∗

BVAR-cholSV-RO 0.471 0.823 1.114 1.396 -0.727 -1.750 -2.657 -3.527
BVAR-eigSV 0.427 0.750 1.027 1.295 -0.477 -1.715 -2.917 -4.056∗

BVAR-OISV 0.426 0.744 1.016 1.284 -0.467 -1.640 -2.673 -3.612

GS10 BVAR-CSV 0.414 0.686 0.858 1.016 -0.583 -1.651 -2.318 -2.891
BVAR-cholSV 0.364 0.580 0.705 0.821 -0.420 -1.602 -2.384 -3.016
BVAR-cholSV-RO 0.380 0.612 0.750 0.874 -0.522 -1.612 -2.409 -3.141
BVAR-eigSV 0.364 0.578 0.704 0.821 -0.412∗ -1.553 -2.393 -3.128
BVAR-OISV 0.368 0.582 0.710 0.829 -0.461 -1.476 -2.192 -2.810

BAA10YM BVAR-CSV 0.368 0.575 0.697 0.781 -0.269 -1.529 -2.389 -3.233
BVAR-cholSV 0.338 0.524 0.636 0.717 -0.163 -1.434 -2.360 -3.200
BVAR-cholSV-RO 0.364 0.567 0.702 0.803 -0.200 -1.428 -2.317 -3.257
BVAR-eigSV 0.340 0.526 0.636 0.713 -0.122 -1.201∗ -2.041 -2.724
BVAR-OISV 0.342 0.532 0.648 0.735 -0.137 -1.281 -2.142 -2.903

1 Notes: The bold figure indicates the best model in each case. ∗, ∗∗ and ∗ ∗ ∗ denote, respectively, 0.10, 0.05 and 0.01 significance level for a
two-sided Diebold and Mariano(1995) test.The benchmark model in the Diebold Mariano test is BVAR-CSV with 20 variables.
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